Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

lora

Answer

LoRA 相关信息如下:

  • 模型微调:
    • 微调脚本:
    • 加载微调模型:
      • LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过PEFT加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。
      • 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。
  • 在 SD 中的应用:
    • 儿童绘本风格插画:可以生成儿童绘本风格插画,起作用的主要是“KIDS ILLUSTRATION”风格 lora,可搭配不同大模型使用,如官方案例中的超拟真大模型“Realistic Vision”。
    • Fooocus 介绍:LoRA 模型默认放在 Fooocus_win64_1-1-10\Fooocus\models\loras。Fooocus 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。单独安装时需下载三个模型,如 SDXL 基础模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors 等。若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),修改 Fooocus_win64_1-1-10\Fooocus\modules\path.py 文件中的路径,配置好后点击 run.bat 文件启动。
Content generated by AI large model, please carefully verify (powered by aily)

References

模型微调

LoRA微调脚本见:[train/sft/finetune_lora.sh](https://github.com/LlamaFamily/Llama-Chinese/blob/main/requirements.txt),关于LoRA微调的具体实现代码见[train/sft/finetune_clm_lora.py](https://github.com/LlamaFamily/Llama-Chinese/blob/main/train/sft/finetune_clm_lora.py),单机多卡的微调可以通过修改脚本中的--include localhost:0来实现。[heading6]全量参数微调[content]全量参数微调脚本见:[train/sft/finetune.sh](https://github.com/LlamaFamily/Llama-Chinese/blob/main/train/sft/finetune.sh),关于全量参数微调的具体实现代码见[train/sft/finetune_clm.py](https://github.com/LlamaFamily/Llama-Chinese/blob/main/train/sft/finetune_clm.py)。[heading5]Step4:加载微调模型[heading6]LoRA微调[content]基于LoRA微调的模型参数见:基于Llama2的中文微调模型,LoRA参数需要和基础模型参数结合使用。通过[PEFT](https://github.com/huggingface/peft)加载预训练模型参数和微调模型参数,以下示例代码中,base_model_name_or_path为预训练模型参数保存路径,finetune_model_path为微调模型参数保存路径。[heading6]全量参数微调[content]对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。

【SD】儿童绘本风格插画

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-07-02 20:00原文网址:https://mp.weixin.qq.com/s/yf30ZBJPWG1Zzla9M1PnFw今天给大家推荐一个大模型和lora的组合运用,可以生成一些儿童绘本风格的插画。起作用的主要是这个风格lora——“KIDS ILLUSTRATION”,画风非常可爱治愈,可以搭配不同的大模型使用。官方案例使用的是超拟真大模型“Realistic Vision”。我们来测试一下吧,既然是儿童绘本,我们就选择一个大家都熟悉的《小王子》的故事吧。关键词描述:在一个荒凉的星球上,一个小男孩和一只狐狸,玫瑰花,星空。使用latent couple插件([【Stable Diffusion】手涂蒙版定位插件Latent Couple](http://mp.weixin.qq.com/s?__biz=MzA3ODY0OTc1NQ==&mid=2247486812&idx=1&sn=cbfff40072e25d54605f686c7733b8c0&chksm=9fbecda8a8c944be887648e28695df76810d7bf15a83588aa85ede35232c105c5d727c272ca6&scene=21#wechat_redirect))来确定小王子和狐狸的位置关系,并对小王子的服装做一个细致的描述——“黄头发,绿衣服,红围巾”。多刷一些图,最终筛选出来一张,动物的部分总是画得不太好,不过画风还是蛮喜欢的。同样的参考词,我们再换几个大模型看看。比如我们常用的2.5D模型“ReV Animated”,直接生成。

【SD】SD的大哥Fooocus重磅问世,三步成图傻瓜式操作

LoRA模型默认放在这里:\Fooocus_win64_1-1-10\Fooocus\models\lorasFooocus程序默认用到了3个SDXL的模型,一个base,一个Refiner,和一个LoRA。如果单独安装,这里需要下载三个模型:SDXL基础模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensorsrefiner模型:https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensorsLoRA模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors如果你部署了SD秋叶包,也可以共用模型(大模型和LoRA),可以这里找到path.py文件:Fooocus_win64_1-1-10\Fooocus\modules\path.py,用text记事本打开,修改路径为秋叶包模型对应的路径:大模型路径,比如:sd-webui\models\Stable-diffusion\SDXLLoRA模型路径:比如sd-webui\models\lora都配置好之后,点击run.bat文件启动。

Others are asking
Lora训练
以下是关于 Lora 训练的详细步骤: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片没有打标文件(之后可在 C 站使用自动打标功能),或者一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 5. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 6. 上传 zip 以后等待一段时间。 7. 确认创建数据集。 8. 返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 然后等待训练,会显示预览时间和进度条。 7. 训练完成的会显示出每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 此外,还有一些相关的补充内容: Flux 的 Lora 训练准备: 需要下载几个模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意: 1. 不使用的话它们放到哪里都可以,甚至放一起一个文件夹,只要知道“路径”,后面要引用到“路径”。 2. 因为是训练,不是跑图,训练的话,模型就用 flux1dev.safetensors 这个版本,编码器也用 t5xxl_fp16.safetensors 这个版本最好。 下载脚本和安装虚拟环境: 1. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 2. 下载完解压,在文件中找到 installcnqinglong.ps1 这个文件,右键选择“使用 PowerShell 运行”,新手的话这里就点击“Y”,然后等待 1 2 小时的漫长下载过程,下好了之后最后会提示是否下载 hunyuan 模型,选择 n 不用下载。 SD 训练一套贴纸 LoRA 模型: 1. 在 lora 训练器的根目录下,点击【A 强制更新国内加速】,跑完即可关闭窗口。 2. 双击【A 启动脚本】,请保持终端一直运行,不要关闭。出现下列代码即为启动成功。 3. 滚动至最下点击【LoRA 训练】或者直接点击左侧菜单【LoRA 训练】。
2025-03-30
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置随意,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程,完成后提示是否下载 hunyuan 模型,选择 n 不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,选择上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入。 5. 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数。若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 6. 按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择 Lora 和调节参数。
2025-03-15
lora模型
LoRA 模型相关信息如下: Fooocus 程序默认用到了 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。LoRA 模型默认放在 Fooocus_win64_1110\\Fooocus\\models\\loras 。如果单独安装,需要下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,也可共用模型(大模型和 LoRA),可在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中修改路径为秋叶包模型对应的路径,配置好后点击 run.bat 文件启动。 Lora 全称 LowRank Adaptation Models,中文翻译为低阶自适应模型,作用在于影响和微调画面,通过它可以再现人物或物品的特征。大模型训练复杂且对电脑配置要求高,LoRA 采用在原模型中插入新的数据处理层的方式,避免修改原有模型参数,训练轻量化,显存达到 6G 即可开启训练。 有利用新版 SDXL 生成的 lora 如针线娃娃,需要使用 SDXL1.0 的模型才可以运行,触发词是 BJ_Sewing_doll。想体验可添加公众号【白马与少年】,回复【SDXL】。
2025-03-09