以下是关于文档生成类 AI 的相关信息:
生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,这些内容可以是多模态的,包括文本(例如文章、报告、诗歌等)、图像(例如绘画、设计图、合成照片等)、音频(例如音乐、语音、环境声音等)、视频(例如电影剪辑、教程、仿真等)。
Generative AI 可以应用于广泛的场景,例如文档摘要(将长篇文章或报告总结为简短、精准的摘要)、信息提取(从大量数据中识别并提取关键信息)、代码生成(根据用户的描述自动编写代码)、营销活动创建(生成广告文案、设计图像等)、虚拟协助(例如智能聊天机器人、虚拟客服等)、呼叫中心机器人(能够处理客户的电话请求)。
在工作原理方面,Generative AI 通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。
Google Cloud 提供了一些相关工具,如 Vertex AI(端到端机器学习开发平台,帮助开发人员构建、部署和管理机器学习模型)、Generative AI Studio(允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少)、Model Garden(可以让您发现 Google 的基础和第三方开源模型,并与之交互,提供一组 MLOps 工具,用于自动化机器学习管道)。
此外,AI 生成测试用例也是一项非常有价值的功能,有基于规则的测试生成(包括测试用例生成工具如 Randoop、Pex 等,模式识别工具如 Clang Static Analyzer、Infer 等)、基于机器学习的测试生成(包括深度学习模型如 DeepTest、DiffTest 等,强化学习工具如 RLTest、A3C 等)、基于自然语言处理(NLP)的测试生成(包括文档驱动测试生成工具如 Testim、Test.ai 等,自动化测试脚本生成工具如 Selenium IDE+NLP、Cucumber 等)等多种方法和工具。
生成式人工智能是一种人工智能技术,它能够生成新的、未曾存在的内容。这些内容可以是多模态的,包括:文本:例如文章、报告、诗歌等图像:例如绘画、设计图、合成照片等音频:例如音乐、语音、环境声音等视频:例如电影剪辑、教程、仿真等[heading3]应用场景[content]Generative AI可以应用于广泛的场景,例如:文档摘要:将长篇文章或报告总结为简短、精准的摘要信息提取:从大量数据中识别并提取关键信息代码生成:根据用户的描述自动编写代码营销活动创建:生成广告文案、设计图像等虚拟协助:例如智能聊天机器人、虚拟客服等呼叫中心机器人:能够处理客户的电话请求[heading3]如何工作?[content]1.训练阶段:Generative AI通过从大量现有内容(文本、音频、视频等)中学习,进行训练。训练的结果是一个“基础模型”。2.应用阶段:基础模型可以用于生成内容并解决一般性问题。它还可以使用特定领域的新数据集进一步训练,以解决特定问题,这样就可以得到一个量身定制的新模型。[heading3]Google Cloud的工具[content]Vertex AI:这是Google Cloud上的端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型。Generative AI Studio:这是一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式AI模型,无需代码或代码量少。Model Garden:这是一个平台,可以让你发现Google的基础和第三方开源模型,并与之交互。它提供了一组MLOps工具,用于自动化机器学习管道。
AI生成测试用例是一项非常有价值的功能,可以显著提高测试覆盖率、减少人工编写测试用例的时间和成本。以下是一些具体方法和工具,展示AI如何生成测试用例:[heading3]1.基于规则的测试生成[heading4]a.测试用例生成工具[content]Randoop:基于代码路径和规则生成测试用例,适用于Java应用程序。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET应用。[heading4]b.模式识别[content]Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。Infer:Facebook开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。[heading3]2.基于机器学习的测试生成[heading4]a.深度学习模型[content]DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。[heading4]b.强化学习[content]RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。[heading3]3.基于自然语言处理(NLP)的测试生成[heading4]a.文档驱动测试生成[content]Testim:AI驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。Test.ai:利用NLP技术从需求文档中提取测试用例,确保测试覆盖业务需求。[heading4]b.自动化测试脚本生成[content]Selenium IDE+NLP:结合NLP技术扩展Selenium IDE,从自然语言描述中生成自动化测试脚本。Cucumber:使用Gherkin语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。
00:00欢迎来到Generative AI Studio课程简介。在本视频中,您将了解什么是Generative AI Studio并描述其使用选项。您还可以自己演示Generative AI Studio的语言工具。00:14什么是生成式人工智能?它是一种为您生成内容的人工智能。什么样的内容?那么,生成的内容可以是多模式的,包括文本、图像、音频和视频。00:28当给出提示或请求时,Generative AI可以帮助您完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人。00:42这些只是几个例子!人工智能如何产生新内容?它从大量现有内容中学习。这包括文本、音频和视频。从现有内容中学习的过程称为训练,其结果是创造00:57的“基础模型”。为Bard等聊天机器人提供支持的LLM或大型语言模型是基础模型的典型示例。[动画-向左滑动图形以过渡到下一张幻灯片]基础模型01:07然后可用于生成内容并解决一般问题,例如内容提取和文档摘要。它还可以使用您所在领域的新数据集进一步训练以解决特定问题,01:19例如财务模型生成和医疗保健咨询。这导致创建了一个新模型,该模型是根据您的特定需求量身定制的。您如何使用基础模型为您的应用程序提供动力,以及您如何进一步01:32训练或调整基础模型来解决您特定领域的问题?Google Cloud提供了多种易于使用的工具,可帮助您在具有或不具有AI和机器学习背景的项目中使用生成式AI。01:45一种这样的工具是Vertex AI。Vertex AI是Google Cloud上的端到端机器学习开发平台,可帮助您构建、部署和管理机器学习模型。使用Vertex AI,如果您是应用程序开发人员或数据科学家并且想要构建应用程序,