Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能与机器学习具体是什么

Answer

人工智能是一种目标,旨在让机器展现智慧,简称 AI。它包括多种实现方法,如自上而下的方法,即对推理过程进行建模,将其形式化为计算机程序,依赖于知识表示和推理;自下而上的方法,模拟大脑中的神经元,构建人工神经网络,通过举例让其学习解决问题。

机器学习是人工智能的一个子领域,是一种让机器自动从资料中找到公式的手段。机器学习模型分为监督和无监督两种,监督模型使用标记的数据学习并预测未来值,无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。

生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容,如自然语言、图像或音频等,其输出不是数字或类别。生成式人工智能模型使用统计模型预测预期响应,并根据训练数据生成新内容,但可能产生幻觉,即无意义或语法错误的单词或短语。

大语言模型是具有大量参数的“深度学习”模型。ChatGPT 是基于大型语言模型的对话机器人,是 AIGC 技术在文本生成领域的一个应用实例。AIGC 是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

1. 生成式人工智能简介

视频学习地址:https://youtu.be/G2fqAlgmoPo中文版本推荐[宝玉XP翻译版本](https://www.bilibili.com/video/BV15a4y1u77v/)和超正经学术君(以下是两个版本):这个名为"生成式人工智能简介"的视频是由Gwendolyn Stripling博士主讲的。她介绍了生成式人工智能的概念,这是一种可以产生各种类型内容的人工智能,包括文本、图像、音频和合成数据。她解释了人工智能和机器学习的区别,机器学习是人工智能的一个子领域,它通过输入数据训练模型,使计算机能够在没有明确编程的情况下学习。机器学习模型可以是监督的,也可以是无监督的,监督模型使用标记的数据从过去的例子中学习并预测未来的值,而无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,它使用人工神经网络处理比传统机器学习模型更复杂的模式。这些神经网络可以使用标记和未标记的数据,从而允许半监督学习。生成式人工智能是适用于这个学科的人工智能的一个子集。它试图学习数据和标签之间的关系,以生成新的内容。生成式人工智能输出自然语言、图像或音频,而非生成式人工智能输出数字或类别。生成式人工智能模型使用统计模型预测预期的响应,并根据它们接受训练的数据的基础结构生成新的内容。他们可以根据接收到的输入生成文本、图像、音频和决策的新颖组合。生成式人工智能的力量来自于使用了Transformers,这种技术在2018年彻底改变了自然语言处理(Transformer模型的核心思想是“自注意力机制”/Self-Attention Mechanism,也被称为“自我注意力”或“注意力”。这种机制允许模型在处理一个词或短语时,同时考虑到与它相关的其他词或短语的信息。这种方式使得模型能够更好地理解语言的上下文,从而更准确地进行翻译或生成文本)。然而,Transformers也可能产生幻觉,这些是模型生成的无意义或语法错误的单词或短语。

人工智能简介和历史

在自上而下的方法中,我们尝试对推理过程进行建模。由于我们在推理时可以知道自己的思考步骤,因此我们可以尝试将这一过程形式化,并转化为计算机程序。这就是所谓的符号推理(symbolic reasoning)。人们的头脑中往往有一些指导决策过程的规则。例如,当医生对病人进行诊断时,他/她可能会通过发烧症状意识到病人身体内部可能有一些炎症。通过将大量规则应用于特定问题,医生有可能得出最终的诊断结果。这种方法在很大程度上依赖于知识表示和推理。从人类专家那里提取知识可能是最困难的部分,因为医生在很多情况下并不清楚自己为什么会得出特定的诊断结果。有时,他/她只是直接在脑海中浮现出解决方案,而并未经过明确的思考。类似“根据照片判断一个人的年龄”这样的任务,根本无法简化为对知识的操作。[heading2]自下而上的方法[content]我们还有另一种选择,就是模拟大脑中最简单的元素——神经元。我们可以在计算机中构建一个人工的神经网络,然后通过举例教它解决问题。这类似于新生儿通过观察周围环境来学习的过程。✅对婴儿的学习方式做一个小调研。婴儿大脑中的基本要素有哪些?那么机器学习(ML)呢?人工智能的一部分方法是基于数据来使计算机学会解决问题,这样的方法称为机器学习。我们在本课程中将不讨论经典机器学习,建议你可以学习单独的《[机器学习入门](https://github.com/microsoft/ML-For-Beginners)》课程。

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
社群机器人
以下是关于社群机器人的相关内容: 制作 Coze 社群机器人的大致流程看似步骤繁多,但由于 Coze 本身的设计和强大的社区力量,实际操作并不复杂,关键是要“迈出第一步”。在制作过程中,与社区成员设计方案时的深入讨论、在 Coze 平台上灵活组装功能时的高效畅快以及在不断调试优化中见证机器人成长,都充满乐趣。未来会有更多社区加入制作社群机器人的行列,让更多人感受 AI 智能体的魅力,那时的社群机器人不仅是助手,更是凝聚社区集体智慧的伙伴。目前的社区机器人还有不足,作者会继续优化,看其能否更好地服务社区。 如果对学习 Coze 和 AI Agent 有兴趣,可以加入免费的 AI Agent 共学群,该群组会基于 WaytoAGI 社区等高质量信息源分享相关玩法、经验和前沿资讯。可搜索微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学以便被拉入群。 此外,以综合服务的社群机器人为例,一个好的文章或复杂任务不是一次 AI 工作就能完成的,需要任务拆解,比如对用户问题做意图判断,根据意图将线路转接到正确的专属 AI 机器人那里,整个过程称为工作流,通过搭建工作流来完成复杂任务。
2025-04-15
MacBook 如何做一个 RPA 机器人
以下是在 MacBook 上制作 RPA 机器人的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-04-11
怎么搭建微信机器人?
以下是搭建微信机器人的步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 如果想为这个 AI 赋予提示词,可以返回相应步骤进行更改。例如在“目录 4 里的第 17 步”或“第三章,第 7 步”,其中双引号内的 value 部分,便是设置 AI 提示词的地方。 3. 此后,进行任何更改,都需要重新打印登陆二维码。并且一个月内,不要上来就加好友、最好不要私聊聊天。 4. 报错"wxsid"是因为微信未实名,实名即可解决。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 重新在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录。 7. 多次重新登录后,就在宝塔“首页右上角点击重启,重启一下服务器”,清理进程。 8. 熟悉 linux 操作的话,也可以通过重启进程的方式来重启服务。 9. 如果想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 此外: 1. Link AI 提供的 100 个,合计 3500 万 GPT3.5 Token 的礼品码。可以用来实现画图、搜索、识图等功能,COW 插件里几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,领兑换码。 2. 添加微信,拉您进机器人群,先行体验。 如果您仍旧遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可以加 Stuart 个人微信询问。
2025-04-11
创建飞书ai机器人
创建飞书 AI 机器人的步骤如下: 1. 工作流搭建: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻。 2. 飞书机器人创建: 飞书应用建立: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 获取群组或用户 id: 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg 。
2025-04-11
微信机器人如何配置
微信机器人的配置步骤如下: 1. sum4all 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 sum4all 插件目录下的 config.json.template,复制并粘贴重命名为:config.json 注册并获取 sum4all key:https://pro.sum4all.site/register?aff=T6rP ,新用户注册有送免费额度,大家先使用这个进行试用,后续可改为自己的 openAI key。 把复制的 key,粘贴到 sum4all 的 config.json 文件内。(上方有功能阐述,你想要哪个,就把哪个改成 ture) 2. Apilot 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 Apilot 文件下的 config.json.template,复制并粘贴重命名为:config.json 去 https://admin.alapi.cn/account/center 注册,并复制 key 把复制来的 key,粘贴进入。保存。 3. 分段对话配置替换 找到这个路径:/root/chatgptonwechat/channel/wechat,直接下载以下文件进行替换。 此外,微信的配置相对较简单,只需要主项目的 config.json 文件看看是否有"channel_type"参数,参数值为:"wx",即:"channel_type":"wx"。完成以上所有配置部分后,可以准备启动步骤了: 使用 nohup 命令在后台运行程序。 执行完启动脚本,等待 30s 左右,会看到终端有一个微信登录的二维码,微信扫码登录。 如果您想使用更多辅助功能,比如使用总结文件能力,总结网页内容能力,此时需要安装各种插件。这部分配置查看插件配置管理部分。
2025-04-10
利用飞书多维表格,做一个类似于客服机器人 可以怎么做?
利用飞书多维表格做一个类似于客服机器人,可以按照以下步骤进行: 1. 创建一个拟人化的 bot,比如起名叫青青,设定其为人设是一个可爱有趣的少女,擅长回答各种刁钻的问题。完成 BOT 捏好后点击发布。 2. 发布时配置飞书多维表格: 输出为文本时,第一步配置为文本。 配置多维表格输入表单,选择用控件的字段选择器,给字段标题随便起个名字如“question”。 在完善捷径的商家信息这里,可以选择全量发布,也可以选择仅自己可用。为了审核快一些,可以选择仅自己可用。等审核通过之后,就可以在飞书多维表格里面看到发布成功。 3. 还可以探索字段捷径的各种玩法(不含 bot),比如直接创建一个多维表格,第一列是几个成语,第二列是 AI 字段捷径生成的对成语的解释。左边输入一列,比如一列成语,右边配置 AI 字段。 此外,还有一些相关信息供您参考: “Show Me 扣子 AI 挑战赛大消费行业专场圆满落幕,探索 AI 与大消费行业的深度结合”中提到了一些相关作品,如帮助企业快速建立产品智能客服体系、ERP 高智版:扣子销售订单管理大师、亚马逊商品评论智析、AI 电商设计师等。 2024 年历史更新(归档)中包含了关于飞书多维表格字段捷径配置 COZE 的 BOT 青青的相关内容。
2025-04-08
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
论文参考文献自动生成的免费工具,请提供具体下载网址
以下是一些可以自动生成论文参考文献的免费工具及相关信息: 1. 文献管理和搜索: Zotero:结合 AI 技术,能够自动提取文献信息,有助于您管理和整理参考文献。 Semantic Scholar:这是一个由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术为您提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,能帮助您精简和优化论文内容。 需要注意的是,这些内容由 AI 大模型生成,请您仔细甄别。您可以通过以下网址获取这些工具: Zotero:https://www.zotero.org/ Semantic Scholar:https://www.semanticscholar.org/ Grammarly:https://www.grammarly.com/ Quillbot:https://quillbot.com/
2025-04-09
我需要批量对比两版教材中具体文字和插图的变化调整,该使用什么ai工具最合适
对于批量对比两版教材中具体文字和插图的变化调整,目前没有直接针对此需求的特定 AI 工具。但您可以考虑以下几种方式和相关工具来实现类似的功能: 1. 利用自然语言处理技术,如使用 ChatGPT 等语言模型,辅助您对教材的文字内容进行分析和比较,但可能需要您对结果进行进一步的整理和判断。 2. 对于插图的对比,可以尝试使用图像编辑软件,虽然不是专门的 AI 工具,但通过手动操作和一些辅助功能,也能在一定程度上进行比较和分析。 3. 如果您具备一定的编程能力,可以考虑使用相关的图像处理库和自然语言处理库,自己开发一个简单的对比工具。 另外,在一些工作场景中,如批量制作单词卡片,可以使用搞定设计来批量产图,并结合 ChatGPT 辅助生成和整理内容。在图像生成和处理方面,Stable Diffusion 可以用于图像的生成、修改和局部重绘等操作。
2025-04-01
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
AI技术发展时间线,罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?
以下是关于 AI 技术发展的相关内容: AI 技术发展时间线: 从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。 具体的 AI 模型产品: ChatGPT 改变了用户习惯,从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 具体的 AI 技术创新点: 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化,推理能力成为皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 AI 技术的发展趋势: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 应用格局:第一轮洗牌结束,聚焦 20 赛道 5 大场景。 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 产品趋势:多模态上马,Agent 席卷一切,高度个性化呼之欲出。 智变千行百业:左手变革生产力,右手重塑行业生态。 行业渗透率:数据基础决定初速度,用户需求成为加速度。 创投:投融资马太效应明显,国家队出手频率提升。 对用户交互体验的改变: ChatGPT 使用户从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 在文科白领方面,AI 能完成 80%到 90%的工作,如个人助理、呼叫中心、文本处理和教育等领域。 对于工科白领,特别是程序员,AI 能简化代码检索和调整。 在蓝领领域,AI 在自动驾驶方面取得显著进展。
2025-03-31
AI如何帮我写歌,把我哼唱的旋律变成具体音高和乐句
AI 可以通过以下方式帮助您将哼唱的旋律变成具体音高和乐句: 1. Suno 和 Udio 推出了上传音频文件生成音乐的功能,利用此功能,您可以上传哼唱的旋律。有了前置旋律,能精确控制歌曲的速度(Tempo),无需再背绕口的速度词,可精确设定想要的 BPM;控制旋律(Melody),自己制作简单旋律让 AI 补全并贯穿整首歌,还能实现旋律与速度的一谱变速,节省大量 Roll 旋律的时间;选择配器(Instrumentation),按想法选乐器或特殊音色;进行合成(synthesizer),对相同 BPM 和调性的音乐尝试拆分组合以获得更好效果。 2. 对于每个月的点数,您可以用提示词多 Roll 一些和流派、心情、场景相关的曲子,减少限制以发挥 AI 音乐的创造力,并把好旋律存起来作为制作素材;还可以用于 roll 更多细节调整部分,如让某段曲子升调,提升作品品质。 3. 如果只有词和意向风格,先确定最核心情绪所在段落,用 AI 生成最好结果,以此作为动机音轨扩展创作;只有词和一小段自己哼唱的旋律,可以上传哼唱旋律让 AI 扩展出喜欢的风格,将其作为动机音轨继续创作;已有 midi 作曲,可挂载音源导出,在 AI 帮助下丰满核心音轨再扩展出其他段落形成完整歌曲;已有简单录音小样,可利用 REMIX 优化音质与编曲结构,借助 AI 尝试不同曲风版本找到最喜欢的风格,制作成核心音轨进而完成全曲创作。
2025-03-29