知识库问答是机器人的基础功能,其利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(Retrieval-Augmented Generation),是一种结合了检索和生成两种主要人工智能技术的自然语言处理技术,用于提高机器对话和信息处理的能力。
简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。
基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,通过手工录入方式上传文章内容,如创建有关 AI 启蒙和信息来源的知识库。在设计 Bot 时,添加知识库并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。
具体步骤包括:
RAG 研究范式不断发展,分为基础 RAG(Naive RAG)、高级 RAG(Advanced RAG)和模块化 RAG(Modular RAG)三种类型。
知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:
知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:
RAG可以显著提高大模型在处理私域知识或垂直领域问答时的效果。此处向您展示通过百炼控制台操作将RAG的能力集成到智能体应用中的过程。知识库问答的核心本质是RAG,所以这个时候就需要使用RAG技术能力了,那么什么是RAG呢?(1)上传文档:用户上传包含知识的文档,支持txt、pdf、docx等格式,LangChain Chatchat会将文档转换为Markdown格式(2)文本切割:为了便于分析和处理,将长文本切割为小块(chunk)(3)文本向量化:将切割的chunk通过embedding技术,转换为算法可以处理的向量,存入向量数据库(4)问句向量化:用户提问后,同样将用户的问句向量化(5)语义检索匹配:将用户的问句与向量数据库中的chunk匹配,匹配出与问句向量最相似的top k个(6)提交Prompt至LLM:将匹配出的文本和问句,一起添加到配置好的prompt模板中,提交给LLM(7)生成回答:LLM生成回答,返回给用户RAG研究范式不断发展,本节主要描述了其发展过程。我们将其分为三种类型:基础RAG(Naive RAG)、高级RAG(Advanced RAG)和模块化RAG(Modular RAG)。下图简单的说明了这三种RAG的工作流程:基础RAG