直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型中的权重与偏置是什么

回答

在大模型中,权重(weight)和偏置(bias)是非常重要的概念。

大模型的“大”主要体现在用于表达 token 之间关系的参数众多,其中就包括权重和偏置。例如 GPT-3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。

以 Transform 为代表的大模型采用自注意力(Self-attention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。

在感知机学习算法中,感知机的输出和人类标记的正确答案进行比较,如果答案错误,权重和阈值会发生变化。每个权重的变化量取决于与其相关的输入值。对于每个权重 wj:wj←wj+η(t+y)xj,其中 t 表示正确的输出(1 或 0);对于给定的输入,y 是感知机的实际输出;xj 是与权重 wj 有关的输入;η是由程序员给出的学习速率。阈值通过创建一个附加的输入 x0 合并得到,x0 为常数 1,其相对应的权重 w0=-threshold(阈值)。只有在输入与权重的乘积,即输入向量与权重向量之间的点积大于或等于 0 时,感知机才会被触发。

在某些案例中,比如判断数字大小的问题中,不同概念的权重不同,会影响模型的判断结果。例如 9.11 作为日期“概念”的权重可能比它是个数字“概念”的权重大。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

人人都能搞定的大模型原理 - 神经网络

接下来,将感知机的输出和人类标记的正确答案(“8”或者“非8”)做比较。如果感知机给出的答案是正确的,则权重和阈值不会发生变化,但是如果感知机是错误的,其权重和阈值就会发生变化,以使感知机在这个训练样本上给出的答案更接近于正确答案。此外,每个权重的变化量取决于与其相关的输入值,也就是说,对错误的“罪责”的分配取决于哪个输入的影响更大或更小。在上图“8”的324个像素块中,纯黑色方块的像素强度为0影响较大,而纯白色方块的像素强度为255则不会有任何影响。对此数学原理感兴趣的读者,可以查阅下面的计算细节:从数学的角度看,感知机学习算法如下。对于每个权重wj:wj←wj+η(t+y)xj,其中t表示正确的输出(1或0);对于给定的输入,y是感知机的实际输出;xj是与权重wj有关的输入;η是由程序员给出的学习速率,箭头表示更新。阈值通过创建一个附加的输入x0合并得到。x0为常数1,其相对应的权重w0=-threshold(阈值)。对于给定额外的输入和权重(称为偏差),只有在输入与权重的乘积,即输入向量与权重向量之间的点积大于或等于0时,感知机才会被触发。通常,输入值会被缩小或者应用其他变换以防止权重过大。下一个训练将重复上述整个过程。感知机会将这个训练过程在所有的训练样本上运行很多遍,每一次出错时,感知机都会对权重和阈值稍做修改。

有人破译了模型回答 9.9<9.11 的原因! (大佬把模型拆了, 解剖神经元帮你解释

1.选择自定义提示词(当然你也可以选之前预定义的话题,也就是黑色的按钮):PS:黑色的按钮会带着你做新手使用指引。然后左边会出现我们熟悉的chat界面,就不详细介绍这个界面。网站上提供的模型是Llama-3.1 8B Instruct:1.输入你的对话内容,等待左右两边的内容生成。如果这时右边的分析没刷新成上图的样子,在这两个按钮之间做做切换。由于它的归因聚类也是用了大模型,所以稍微等等,它也有个反应时间,过程中可能是这样的:最终你得到的结果可能和我不同,甚至可能是正确的答案,猜测是这个模型用的温度temprature不是最低,因此你会得到不同的结果。Activation Mode:你将获得整段的推理判断。Attribution Mode:你需要选中一个token,它会帮你分析对应的内容里最大的关联。1.从结果中,你会发现模型认知的9.11大概率是那个著名的时间,也可能是一个日期。这种情况下,模型就判断9月11日比9月3日大。而如果我们用一个显然不是日期的数字对比,比如9.31和9.4比,大概率答案是正确的:解释也回归到了数字范畴:它从侧面证明了LLM的基本原理:LLM是采用多头注意力机制预测下一个token的,因此训练数据中相关的语句如果越多,它们之间的相关性概率会越高。在这个案例里,9.11作为日期“概念”的权重显然比它是个数字“概念”的权重大。

其他人在问
在ai图像训练打标时,怎么让部分标签权重更大
在 AI 图像训练打标时,让部分标签权重更大的方法如下: 1. 在 Stable Diffusion 中,手动补充的特殊 tag 放在第一位,因为 tags 标签有顺序,最开始的 tag 权重最大,越靠后的 tag 权重越小。 2. 在 BooruDatasetTagManager 中采用方法二: 删除部分特征标签,如 All tags 中不该出现的错误识别的自动标签,Image tags 中作为特定角色的自带特征的标签,并将特征与 LoRA 做绑定。 完成所有优化删除后,点击左上角菜单 File>Save all changes 保存当前的设置。 此外,在 Stable Diffusion 训练数据集制作中还需注意: 1. 调用 Waifu Diffusion v1.4 模型需要安装特定版本(2.10.0)的 Tensorflow 库,在命令行输入相应命令完成版本检查与安装适配。 2. 进入到 SDTrain/finetune/路径下,运行相应代码获得 tag 自动标注,其中主要参数包括: batch_size:每次传入 Waifu Diffusion v1.4 模型进行前向处理的数据数量。 model_dir:加载的本地 Waifu Diffusion v1.4 模型路径。 remove_underscore:开启后将输出 tag 关键词中的下划线替换为空格。 general_threshold:设置常规 tag 关键词的筛选置信度。 character_threshold:设置特定人物特征 tag 关键词的筛选置信度。 caption_extension:设置 tag 关键词标签的扩展名。 max_data_loader_n_workers:设置大于等于 2,加速数据处理。
2025-03-15
一个 prompt 有 10 段文本内容,怎么标记不同段落的权重
当一个 prompt 有 10 段文本内容时,标记不同段落权重的方法如下: 使用双冒号“::”将提示分成不同部分,并在双冒号后面立即添加一个数字来指定该部分的相对权重。例如,“hot::2 dog”表示单词“hot”比“dog”重要度高出两倍。 在版本 1、2、3 中只接受整数作为权值,版本 4 能接受权值的小数位数。未指定权值时默认为 1。 负数权值可用于提示中以删除或排除不需要的元素,但所有权值的比必须是正数。 改变 tag 权重有多种方式: :数值从 0.1 到 100,低于 1 减弱,大于 1 加强。 括号,权重就重 1.1 倍;每加一层括号就反向减弱 1.1 倍。 小括号权重乘 1.1,如 a;中括号权重除以 1.1;小括号里面直接用冒号写权重也行;反斜杠可以让小括号的权重不生效当做一般字符串处理。 花括号写法,一个花括号权重为 1.05。 提示词其他常用语法:是画到一半的时候开始不画女孩。
2024-11-17
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14