直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

使用llm的爬虫工具推荐下,开源免费

回答

以下是为您推荐的开源免费的使用 LLM 的爬虫工具:

  1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。
  2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。
  3. GPT Crawler:主要运用 typescript 进行数据爬取。
  4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。

同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC Weekly #67

[Reader:jina开源的网页内容爬取工具](https://jina.ai/reader/)[content]将网络信息灌输到大语言模型(LLM)中是实现信息实体化的关键步骤,但这一过程充满挑战。最直接的方法是直接抓取网页内容并提取其HTML数据。然而,抓取操作往往复杂且容易受到封锁,且原始HTML往往包含大量无用的元素,如多余的标记和脚本代码。Reader API解决了这些问题,它能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为你的AI智能体及RAG系统提供高品质的数据输入。[heading2][CiCi:字节AI聊天机器人推出客户端和浏览器插件](https://www.ciciai.c[content]字节的豆包或者CiCi虽然移动版的体验非常离谱,过于想把每个能力都在界面上展示了。但是网页是真不错,尤其是海外版本还避免了模型问题,浏览器插件和客户端也还行。特别是浏览器插件支持翻译和总结,翻译体验做的很好,总结的内容和客户端还是同步的。有需求的可以白嫖一下。[heading2][Perplexity-Inspired LLM Answer Engine:开源的AI搜索应用[content]一个开源的类似Perplexity的AI搜索应用,含构建复杂答案引擎所需的代码和指令,利用Groq、米斯特拉尔人工智能的Mixtral、Langchain.JS、勇敢搜索、服务器应用编程接口和开放人工智能的功能。该项目旨在根据用户查询有效返回来源、答案、图像、视频和后续问题,是对自然语言处理和搜索技术感兴趣的开发人员的理想起点。

巧妇还要种米来炊:怎么准备LLM的数据?很接地气的经验总结

爬虫行业数据对于常识性内容,需要和产品、项目和相关内容专家确认范围,先请判断需要哪些论文或者文本,网站,或者是网站上面存有的文件等等。如果是下载好的论文和文本放在本地放在第二阶段处理。这里第一阶段,我们主要用网络爬虫的方法进行爬取,针对于网页的文本和图片进行爬取。我在工程事件里采用的爬虫主要是用python语言的scrapy库,在crawlab可以做到分布式爬取,非常高效。这里有教程。Scrapy入门教程|菜鸟教程(runoob.com)https://www.runoob.com/w3cnote/scrapy-detail.html快速教程(crawlab.cn)https://docs.crawlab.cn/zh/guide/basic-tutorial/#%E5%88%9B%E5%BB%BA%E7%88%AC%E8%99%AB界面非常友好,可以同时跑好多任务做到csv或json导出举个例子,我这里要爬取国家基础教育资源网的实验材料。这种有结构清晰的网页比较好爬取按教程里做网页结构分析,一次可以跑很多个网页任务。然后获得如下内容:比如这里获取到网页内容和网页指向的文件等等...这里也有一个开源的爬虫工具很好用,GPT Crawler,主要运用typescript进行数据爬取。这里有链接GitHub:https://github.com/BuilderIO/gpt-crawler爬虫方法只能针对一个网址里包含某一系列内容进行爬取,即对于每个网址需要个性化定制爬虫脚本。而且在GPT Crawler里,我尝试过爬虫,认为它自由度不是很高,无法handle多变多样的网页,也可能是我对typescript不熟的原因,我强烈推荐用scrapy或者美丽汤BeautifulSoup,当然别的语言也可以,但我主要用python。

[Agentic AI] 搏一搏,$20变$500:一小时魔改Cursor变身Devin

相比于Cursor,Devin的一个很大的优势是它可以使用更多的工具。比如可以调用浏览器进行搜索,可以浏览网页,甚至可以调用它自己的大脑,用LLM的智能对内容进行分析。这些在Cursor里都是不支持的,但好消息是,因为我们可以通过.cursorrules直接控制给Cursor的prompt,而且它又有运行命令的能力,因此这又构成了一个闭环。我们可以事先准备好一些写好的程序,比如Python库或者命令行,然后在.cursorrules里面向它介绍这些工具的用法,这样它就可以learning on the fly,自然而然的学会如何使用这些工具来完成它的任务。而事实上,这些工具本身也可以使用Cursor在一两分钟内写出来。比如对于网页浏览这个工具,我在[开源的项目](https://github.com/grapeot/devin.cursorrules)里就用Cursor做了一个参考实现。其中有一些需要注意的技术决策,比如为了实现对含有JavaScript内容的网页的抓取,我们在这里不使用Python自己的request库,而是使用playwright之类的浏览器。同时,为了更好地跟LLM沟通,方便它对后续内容的理解和抓取,我们并没有单纯地使用beautiful soup来提取这个网页的文本内容,而是将它按照一定规则转化成了markdown格式,因而保留了它的class name和超链接等等更细节的基础信息,通过这样的方式,在更底层的方面支持LLM撰写后续的爬虫。类似的,对于搜索的工具,有一个小坑是,不论是Bing还是Google,它们的API的搜索质量都远远不如客户端,这主要是历史原因造成的,API和网页端分别是不同的组来负责,但是duckduckgo则没有这样的问题,因此我们使用的参考实现用的是duckduckgo的免费API。

其他人在问
LLM应用可观测性
LLM 应用的可观测性主要体现在以下方面: LangChain:借助 LangSmith 提供更好的日志、可视化、播放和跟踪功能,以便监控和调试 LLM 应用。LangSmith 是基于 Web 的工具,能查看和分析细化到 class 的输入和输出,还提供跟踪功能,用于记录和展示 LLM 应用的执行过程和状态,以及 LLM 的内部信息和统计数据。 Langfuse:为大模型应用提供开源可观测性和分析功能,在可视化界面中可探索和调试复杂的日志和追踪,并使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 此外,微软(中国)的《面向大模型的新编程范式》报告中也强调了在线监控和可观测性的重要性。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
除了LLM,就没有AI模型了吗?
除了 LLM ,还有很多其他类型的 AI 模型。以下为您详细介绍: 1. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。其中生成图像的扩散模型就不是大语言模型。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习:一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。 4. 谷歌的 BERT 模型:可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。生成式 AI 生成的内容,叫做 AIGC 。
2025-04-11
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
anythingLLM本地部署
以下是关于本地部署大模型以及搭建个人知识库的相关内容: 一、引言 作者是大圣,一个致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。本文将分享如何部署本地大模型及搭建个人知识库,读完可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。 五、本地知识库进阶 如果想要对知识库进行更灵活掌控,需要额外软件 AnythingLLM,它包含所有 Open WebUI 能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 配置完成后可进行测试对话。 六、写在最后 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系作者或加其免费知识星球(备注 AGI 知识库)。 本文思路来源于视频号博主黄益贺,作者按照其视频进行实操并附加了一些关于 RAG 的额外知识。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
有没有好的AI爬虫工具
以下是为您推荐的一些 AI 爬虫工具: FireCrawl 开源爬虫工具:无需站点地图,可抓取任何网站的所有可访问子页面。抓取内容可转换为 Markdown 格式,支持 JavaScript 动态内容,并提供易用 API,简化内容爬取和转换。链接:https://x.com/imxiaohu/status/1780592067586269465 MediaCrawler:支持小红书、抖音、快手、B 站和微博等平台内容抓取,集成 IP 代理池防封,支持视频、图片、评论等多种数据格式保存。链接:https://github.com/NanmiCoder/MediaCrawler 、https://x.com/imxiaohu/status/1769569874601546034?s=20
2025-03-28
小红书爬虫智能体
以下是关于小红书爬虫智能体的相关内容: 创建智能体: 1. 输入人设等信息,放上创建的工作流。 2. 配置完成后进行测试。 工作流配置及注意事项: 1. 工作流 2 中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,可将 api_token 作为工作流 2 最开始的输入,用户购买后输入 token 再发布。 2. 对于 Coze 智能体,使用单 Agent 对话流模式,编排对话流时注意配置 cookie 等,使用代码节点进行数据处理,注意代码节点输出的配置格式。测试时找到一篇小红书笔记,试运行对话流,确保成功。发布时选择多维表格,注意输出和输入类型等配置。 智能体示例: 小众打卡地智能体,输入旅游目的地城市可推荐 3 个小众打卡地的小红书类文案及精美配图。其核心价值包括发掘特色景点、提供个性化建议、帮助获取高质量旅行参考信息及提供小红书文案。搭建思路重点包括录入小红书相关文案参考知识库、通过文本模型组成搜索词搜索并提取相关 url、滤除需安全认证网站等、提取小众地点输出及进行图片搜索等。
2025-03-15
ai爬虫
以下是关于 AI 爬虫的相关信息: Firecrawl Extract 是一款只需文字提示就能爬取任意网络数据的工具。它具有以下特点: 1. 通过自然语言提示,能轻松将网页内容转换为结构化数据,无需手动写脚本。 2. 支持复杂数据提取,例如联系人信息、任务描述、动态价格等。 3. 兼容多语言与国际网站,能够抓取 JavaScript 渲染的动态页面内容。 4. 提供 API 集成,支持大规模数据处理,可提取数千个结果,解决上下文限制问题。 相关链接: 另外,对于不会代码的人,也可以尝试使用 Python 和 AI 来完成爬虫应用。例如,可以让 ChatGPT 帮忙写抓取特定文章(如地址为 https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ )正文内容的程序,然后在 Colab 里运行。
2025-02-08
免费的网页爬虫相关Ai工具
以下是一些免费的网页爬虫相关 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目方面: 在里有用 Cursor 做的网页浏览工具的参考实现。其中为实现对含有 JavaScript 内容的网页抓取,使用 playwright 之类的浏览器而非 Python 自己的 request 库,同时为方便 LLM 理解和抓取,将网页内容按规则转化成 markdown 格式保留细节基础信息。 对于搜索工具,duckduckgo 的免费 API 被用于参考实现,因其搜索质量优于 Bing 和 Google 的 API。
2025-01-25
有与网页爬虫相关的AI工具吗
以下是一些与网页爬虫相关的 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目中也有相关工具,如: 在里有用 Cursor 实现的网页浏览工具参考,其中为实现对含有 JavaScript 内容的网页抓取,使用了 playwright 之类的浏览器,将网页内容转化成 markdown 格式以支持 LLM 后续的爬虫。 对于搜索工具,duckduckgo 的免费 API 可避免一些质量问题。
2025-01-25
python实现网页爬虫
以下是使用 Python 实现网页爬虫的详细步骤: 首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装: ``` !pip install beautifulsoup4 requests ``` 然后,使用以下代码抓取并解析指定的网页内容: ```python import requests from bs4 import BeautifulSoup def get_webpage_content: response = requests.get soup = BeautifulSoup 这里根据实际网页结构调整提取正文的部分 例如:content = soup.find return content url = 'https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ' print ``` 请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。 另外,Python 在自动化方面应用广泛,例如办公软件自动化(pythondocx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、pythonpptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(dockerpy 用于 Docker 容器管理)等。
2025-01-02
自动生成提示词的开源工具有哪些
以下是一些自动生成提示词的开源工具: 1. Freepik 推出的 Reimagine AI 工具:用户上传图片即可自动生成提示词,无需输入文字。它还能实时提供无限滚动结果展示,边操作边生成图像,通过调整提示词实时修改图片细节,并支持多种风格切换。相关链接:https://freepik.com/pikaso/reimagine 、https://x.com/imxiaohu/status/1770437135738581414?s=20 2. StreamMultiDiffusion 项目:使用区域文本提示实时生成图像,具有交互式操作体验,每个提示控制一个区域,实现精准图像生成。相关链接:https://arxiv.org/abs/2403.09055 、https://github.com/ironjr/StreamMultiDiffusion?tab=readmeovfile 、https://huggingface.co/spaces/ironjr/SemanticPalette 、https://x.com/imxiaohu/status/1770371036967850439?s=20 3. 【SD】自动写提示词脚本 One Button Prompt:可以在主菜单输入人物提示词,在“高级”中设置提示词混合,还具有一键运行放大的模块,包括完整的文生图放大和图生图放大,甚至可接入其他脚本和 controlnet。获取方式:添加公众号【白马与少年】,回复【SD】。
2025-04-12
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
开源AI Agent软件有哪些
以下是一些开源的 AI Agent 软件: 1. AutoGPT 和 BabyAGI:在去年 GPT4 刚发布时风靡全球科技圈,给出了让 LLM 自己做自动化多步骤推理的解题思路。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 4. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 7. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,智谱·AI 开源的语言模型中也有与 Agent 相关的,如 AgentLM7B、AgentLM13B、AgentLM70B 等。
2025-03-29
mcp 有什么开源的方案吗
Anthropic 于 2024 年 11 月推出并开源了 MCP(模型上下文协议)。MCP 就像一个“转接头”或“通用插座”,能统一不同的外部服务,如 Google Drive、GitHub、Slack、本地文件系统等,通过标准化接口与大语言模型对接。开发者基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。MCP 里面还包含 SSE(ServerSent Events),是一种允许服务器向浏览器推送实时更新的技术。MCP 像为 AI 模型量身定制的“USBC 接口”,可以标准化地连接 AI 系统与各类外部工具和数据源。与传统 API 相比,MCP 是单一协议,只要一次整合就能连接多个服务;具有动态发现功能,AI 模型能自动识别并使用可用的工具;支持双向通信,模型不仅能查询数据,还能主动触发操作。相关链接:
2025-03-27
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
推荐一个免费的论文写作ai
以下为您推荐一些免费的论文写作相关的 AI 工具和服务: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 6. AIGC 论文检测网站: :提供免费的 AI 内容检测工具,识别文本是否由 AI 生成。使用时将文本粘贴到在线工具中点击检测按钮获取分析结果。 GPTZero:专门检测 GPT3 生成内容,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告。 Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中获取分析结果。 7. 免费的 AI 理解论文服务: https://www.aminer.cn/:如果是计算机领域尤其是人工智能话题,可订阅感兴趣的话题,网站提供免费的 AI 理解论文服务,每篇论文处理一次全站可看,多数论文有免费 PDF 下载链接。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!
WayToAGI(通往AGI之路)是一个由热爱AI的专家和爱好者共同建设的开源AI知识库。它具有以下特点和优势: 1. 整合了各种AI资源,让大家能轻松学习AI知识,应用各类AI工具和实战案例。 2. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 3. 时刻追踪AI领域最新进展并更新,每次访问都有新收获。 4. 涵盖丰富的内容,包括AI视频、AI绘画、AI音乐、AI艺术、AI即兴戏剧、AI Agent共学等。 5. 为用户提供全面系统的AI学习路径,辅助思考,让学习过程少走弯路。 6. 自 2023 年 4 月 26 日诞生,在无推广情况下,一年已有超 70 万用户和超千万次访问量。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。访问“waytoagi.com”即可找到社群。
2025-04-12
有没有免费制作数字人的网站?
以下是一些免费制作数字人的网站及使用方法: HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法:点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。上传后效果如图所示,My Avatar处显示上传的照片。点开大图后,点击Create with AI Studio,进入数字人制作。写上视频文案并选择配音音色,也可以自行上传音频。最后点击Submit,就可以得到一段数字人视频。 DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法:点击上面的网址,点击右上角的Create vedio。选择人物形象,可以点击ADD添加照片,或者使用DID给出的人物形象。配音时,可以选择提供文字选择音色,或者直接上传一段音频。最后,点击Generate vedio就可以生成一段视频。打开自己生成的视频,可以下载或者直接分享给朋友。 KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法:点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。点击开始创作,选择自定义照片。配音时,可以选择提供文字选择音色,或者直接上传一段音频。打开绿幕按钮,点击背景,可以添加背景图。最后,点击生成视频。 此外,在剪映中也可以生成数字人:在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费的、适合的数字人形象,比如“婉婉青春”。选择数字人形象时,软件会播放声音,可判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中。软件会根据提供的内容生成对应音视频,并添加到当前视频文件的轨道中。左下角会提示渲染完成,可点击预览按钮查看效果。还可以为视频增加背景图片,删除先前导入的文本内容,点击左上角的“媒体”菜单并点击“导入”按钮,选择本地图片上传,将图片添加到视频轨道上,通过拖拽轨道右侧竖线使其与视频对齐。
2025-04-11
depseek免费使用网站
以下是一些关于 DeepSeek 免费使用的相关信息: 有一些公众号文章提到了 DeepSeek 的相关内容,如“DeepSeek 卡顿?别急!这些平替平台让你畅快用”“终于找到稳定、免费使用满血版 DeepSeek 的地方!”等,您可以通过以下链接查看具体文章: 关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法,有以下要点: 包含火山方舟 DeepSeek 申请免费额度教程。 API 使用方式包括飞书多维表格调用、Coze 智能体调用、浏览器插件调用。 可以使用邀请码 D3H5G9QA,邀请链接:https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA ,邀请可拿 3000 万 tokens。 即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 DeepSeek 有几种含义,如 deepseek 公司叫深度求索,其网页和手机应用目前免费,API 调用收费,DeepSeek R1 大模型权重文件开源,可本地部署。
2025-04-10
免费ai视频网站
以下是一些免费的 AI 视频网站: ProductHunt 2023 年度最佳产品榜单中提到的: Dora AI:用一次 prompt 生成网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Bard(免费):谷歌推出的官方 ChatGPT 竞争者。 Chat.DID(免费):有史以来首个允许人们以人类方式与 AI 进行视频聊天的 APP,现已进入测试阶段。 Pika(免费):将创意转化为动态视频的概念视频平台。 4 月 1 日 AI 资讯汇总中未明确提及具体的免费 AI 视频网站,但包含了一些 AI 相关的视频方面的资讯,如 Higgsfield 发布 50 多个电影级摄影机动作预设,luma 为 Ray 2 引入摄像机运动概念,Remakes 支持基于用户上传图像直接编辑并融合 Remade 视频特效,Meta 宣布推出 MoCha 系统实现电影级说话角色合成效果等。 MIT 上线了给 8 18 岁孩子的免费 AI 课程 Day of AI 网站,但该网站的课程资源面向家长、老师群体,大孩子可自学,小孩子可能需要家长辅助。
2025-04-10
免费ai网站
以下为一些免费的 AI 网站: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程网站 Day of AI,该课程包含在 MIT 的 RAISE 项目中,完全免费,但面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. Poe AI 平台,这是一个支持与多个智能 AI 机器人(如 GPT 4 等)进行实时在线交流的聊天网站,注册账号后可免费使用,部分功能需付费订阅,官网地址:https://poe.com/ ,可在官网帮助中心找到具体教程。 3. 以下是一些与代码相关的免费 AI 网站: CodeWhisperer:亚马逊发布的免费 AI 编程助手,链接:https://aws.amazon.com/codewhisperer/ 。 Codeium:基于人工智能的 AI 辅助编程与代码生成平台,链接:https://www.codium.ai/ 。 Cursor:新的 IDE,使用 AI 辅助编程,与 OpenAI 有深入合作,链接:https://www.cursor.so/ 。 Ghostwriter:知名在线编程 IDE Replit 推出的 AI 编程助手,链接:https://replit.com/site/ghostwriter 。 4. 以下是一些与音频相关的免费 AI 网站: Resemble:AI 人声生成工具,链接:https://www.resemble.ai/ 。 Altered Studio:专业的 AI 变声软件,链接:https://www.altered.ai/ 。 Voicemod:AI 变声工具,链接:https://www.voicemod.net/aivoices/ 。 Krisp:人工智能降噪应用程序,链接:https://krisp.ai/ 。
2025-04-10