Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI、AIGC、大模型这三者之间有什么关系

Answer

AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。

生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。

AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。

2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

Others are asking
给我推荐个 ai视频提示词
以下为为您推荐的 AI 视频提示词: 1. 史诗灾难场景 提示词: 2. 赛博朋克未来都市 提示词: 3. 奇幻神话场景 提示词: 4. Adobe Firefly AI 视频功能相关 提示词:Miniature adorable monsters made out of wool and felt,dancing with each other,3d render,octane,soft lighting,dreamy bokeh,cinematic.(用羊毛和毛毡制成的微型可爱怪物,互相跳舞,3D 渲染,辛烷值,柔和的灯光,梦幻般的散景,电影) 提示词:Footage of a camera on a drone flying over a desert with wind blowing over the dunes creating waves in the sand below.(无人机上的摄像机飞越沙漠的镜头,风吹过沙丘,在下面的沙子上产生波浪) 提示词:Detailed extremely macro closeup view of a white dandelion viewed through a large red magnifying glass 提示词:Cinematic closeup and detailed portrait of a reindeer in a snowy forest at sunset.The lighting is cinematic and gorgeous and soft and sunkissed,with golden backlight and dreamy bokeh and lens flares.The color grade is cinematic and magical.(日落时雪林中驯鹿的电影特写和详细肖像。灯光如电影股华丽、柔和、如阳光股,金色背光、梦幻股的散景和镜头光量。色彩等级具有电影股的魔力。) 提示词:Slowmotion fiery volcanic landscape,with lava spewing out of craters.the camera flies through the lava and lava splatters onto the lens.The lighting is cinematic and moody.The color grade is cinematic,dramatic,and highcontrast.(慢动作的炽热火山景观,熔岩从火山口喷涌而出。相机飞过熔岩,熔岩溅到镜头上。灯光具有电影感和喜怒无常。色彩等级具有电影感、戏剧性和高对比度)
2025-03-17
视频号运营的ai教程
以下是关于视频号运营的 AI 教程相关内容: 保持日更:在起号阶段至少两天一更,每天用半小时完成 20 秒的简单内容制作,持续更新以向平台展示创作者的诚意。 选择赛道:不做资讯类,选择具有 AI 视觉冲击力、利他的内容,有 AI 基础可做教程。 寻找对标:起号阶段找 10 个对标账号,参考其内容和模式。可在小红书创作者平台的成长榜样中寻找,在小红书创作者后台查看账号是否被打上标签。 克服心理:出镜做 IP 时不要有容貌焦虑,长得丑或有特点都能有流量,要克服不敢出镜的心理。 蹭取热点:蹭经过平台验证有流量的热点,如黄油小熊,根据热点抄学制作,同时注意热点的舆论导向和合规性。做哪个平台就蹭哪个平台的热点。 获取视频教程:可在 vtwoagi.com 网站的飞书知识库中获取 AI 视频创作教程。 应对抄袭方法:在抄袭者评论区留言指出,或找朋友点赞将评论顶上去,为自己账号引流。 特效视频长度:建议控制在 1 分钟内,不建议做费时费力的剧情或故事片。 账号限流处理:视频号限流建议重新起号,小红书限流可日更 10 天尝试。 内容商业价值:内容有商业价值的标准是甲方或品牌愿意投钱,如靠播放量或带货分成有收入。 封面获取渠道:可从堆友、吉梦、小红书等获取封面素材。 内容发布时间:8 点到 10 点、2 点到下午 5 点、7 点到 8 点较为合适。 此外,还有一些相关的 AI 短视频获奖作品及相关信息: 城市狂想:AI 文旅短视频创意大赛圆满落幕,其中爆款人气奖作品是以“济南”为主题的 4 分钟之长的作品,由“通往 AGI 之路”济南社群的小伙伴共创。还有以“动物”为主角展示厦门文化底蕴和现代魅力的作品等。 XiaoHu.AI 日报 12 月 04 日的内容包括五步学会用 AI 制作动画视频播客、Hailuo AI 推出让静态 2D 插画“活”起来的新功能、腾讯 Hunyuan 130 亿参数开源视频模型等。
2025-03-17
如何利用AI来打造自己的知识库?需要利用哪些软件?
以下是利用 AI 打造自己知识库的一些方法和可能用到的软件: 1. 飞书软件:例如“通往 AGI 之路”就是一个使用飞书搭建的 AI 知识库。您可以在飞书大群中与机器人对话获取资料。 2. Coze:在“大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库”中有相关介绍,能帮助您理解 AI 时代的知识库,包括其概念、实现原理和能力边界等。 3. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后可进行配置,包括选择大模型、文本嵌入模型和向量数据库。在 AnythingLLM 中可创建独有的 Workspace 来构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后可进行测试对话。 4. GPT:通过将文本拆分成小文本块并转换为 embeddings 向量,保存在向量储存库中作为问答的知识库。当用户提问时,将问题转换为向量并与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 希望以上信息对您有所帮助。
2025-03-17
ai写毕业论文
使用 AI 写毕业论文是一个具有争议性的话题,虽然 AI 技术可以提供一定的辅助,但不能完全依赖。以下是一些相关信息: 在论文写作的格式和模板方面: 有本科毕业设计模板、本科毕业论文模板、硕士研究生学位论文模板等,格式包括字体(如宋体)、字号(小四)、行距(1.5 倍)等,还可以自定义格式模板实现自动调整,也可通过学校教务系统查询。 在论文写作的辅助工具方面: 文献管理和搜索:Zotero 能自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 可检测抄袭。 同时,也有示例提到可以直接要求语言模型帮写论文,但需要注意这并非道德的使用方式。使用这些 AI 工具时,应结合自身写作风格和需求,选择合适的辅助工具,并确保论文的原创性。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-17
谷歌AI 生成访谈对话
以下是关于谷歌 AI 相关的信息: 谷歌推出的 NotebookLM ,有人称它为笔记工具,有人说它是 AI 学习工具,还有人认为它是播客生成器。体验地址:https://notebooklm.google/ 。只要上传文档、音频或感兴趣的网页链接,如 YouTube 链接,它就能生成专业的播客,其中两个主持人的对话生动自然,包含各种人类的语气和行为。 Character.ai 是一款由 Noam Shazeer 和 Daniel De Freitas 于 2022 年 9 月创建的基于 LLM 的聊天机器人网站。该网站预先创建了许多聊天角色,用户可以与之交流,也能自己创作角色。与 ChatGPT 不同,它更注重人格属性,试图满足社交、情感、陪伴、支持等需求,还支持创建房间,多人可用不同角色聊天。目前没有商业变现途径,但计划在不久的将来推出付费订阅模式,也可能采用广告支持模式。 生成式 AI Studio : 详细功能介绍: 创建对话:包括指定对话上下文、示例、测试对话。 集成到应用程序:提供 API 和 SDK ,需下载适合编程语言(如 Python 或 Curl )的 Vertex AI SDK ,按照示例代码和 API 文档将代码插入应用程序。 调整大型语言模型的挑战与解决方案: 挑战:微小的措辞或词序变化可能影响模型结果,模型响应可能不完全可预测,模型响应质量不一,微调大型模型可能耗时且成本高,为大模型提供服务可能涉及额外麻烦和成本。 解决方案:参数有效调整,通过仅训练一部分参数来减轻微调 LLM 的挑战,这些参数可能是现有模型参数的子集或全新的参数,例如向模型添加额外的层或额外的嵌入到提示中。
2025-03-17
AI在医学的应用
AI 在医学领域有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 此外,AI 在医疗健康生物制药的研究中也发挥着重要作用,例如: 1. 提前三年诊断胰腺癌。 2. 发现与胶质母细胞瘤相关的新靶基因。 3. 帮助抗衰老,筛查高效的药物候选物。 4. 寻找阿尔兹海默症的治疗方法。 5. 早期诊断帕金森。 在 2024 年,AI 在医疗领域的应用与发展趋势包括: 1. 利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其相应报告中生成大型数据集。
2025-03-17
给我一份通往AIGC的学习目录
以下是一份通往 AIGC 的学习目录: 1. AIGC 概述 1.1 GenAI、AIGC 的基本概念 GenAI 的定义、工作原理及应用 典型的 GenAI 产品 AIGC 的定义及创建方式 国内 AIGC 的监管框架 1.2 AIGC 的分类及应用 语言文本生成的模型和代表项目 图像生成的技术和代表项目 音视频生成的方法和代表项目 AIGC 在音乐生成、游戏开发和医疗保健等领域的应用 1.3 AIGC 应用可能引发的风险 内生风险,如算法的不可解释性和不可问责性,代码开源的安全和伦理担忧 数据隐私问题,如数据泄露、匿名化不足、未经授权的数据共享 知识产权风险,如作品侵权、不当竞争 相关法律和规定对 AIGC 的要求 AIGC 滥用可能导致的问题,如虚假信息传播、侵犯隐私 2. AI 赋能教学 从易到难的学习路径 了解 AI 工作原理 尝试各种 AI 工具 学会优化提示词 生成课程资源 解决教学场景 课上师生机共学 促学生正确使用 提升人机共创力 相关主题 AIGC 教育革命:技术原理与课堂实践 AI 从工具到助手赋能教师提升效率与能力 大语言模型的教学潜力:交流技巧与心得 AI 与教育场景融合拓展教学边界与创新场景 AI 与人类智能的共生放大学生思考力塑造深度学习能力 一线教师的 AI 需求与高效工具推荐 AI 赋能课堂的核心逻辑:从理论到应用 解码 AI 教学案例:创新与实践 教学主要负担分析,如备课压力、适应新课标
2025-03-17
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
AIGC是什么意思
AIGC 是 AI generated content 的缩写,又称为生成式 AI,指利用人工智能技术生成的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 AIGC 工具通常使用机器学习算法,以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式。AIGC 由人工智能生成内容,可快速大规模生成,适用于自动化新闻、广告创作等;UGC 由用户生成,内容丰富多样,适用于社交媒体、社区论坛等;PGC 由专业人士或机构生成,内容质量高、专业性强,适用于新闻媒体、专业网站等。 在国内,AIGC 主要在《网络安全法》《数据安全法》《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管。
2025-03-13
教育行业有那些基于aigc的业务实际落地的产品和案例?
以下是教育行业基于 AIGC 的一些业务实际落地的产品和案例: 教师的 AI 减负指南生成式人工智能在教学中的应用,包括教师使用 AI 的小技巧。涉及人员有张亚丽、富露露、张亚玲、张楚璇、吴箭枢等,学校有深圳大学附属中学、苏州工业园区娄葑学校、上海市静安区风华初级中学南校、江苏省苏州工业园区教师发展中心中学、苏州工业园区唯亭学校初中、中央民族大学附属中学等。 AIGC 人机协同国家课程项目化学科实践设计与实施,例如以科学《计量时间博物展》为例,以及基于思维可视化的项目式主题学习设计与实践,如以智驾未来课程为例。相关人员有祝琛、崔琴、张然、刘敏、王国庆、吴沁珂等,学校有深圳市南方科技大学教育集团实验二小、成都经济技术开发区实验小学校。 Al 创作家:用 AI 辅助设计桌游,解决学校实际问题,如北京市新英才学校的魏一然所做的工作。 生成式人工智能与教学变革:AI 领雁行动的探索与实践,相关人员有邹贤莲、向雪萍、陈治佑、余初冉、阊洪娇,学校有重庆两江新区行远小学校。 北京市新英才学校的跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 的帮助下备课和授课,生物和信息科技老师合作一起带着学生用训练 AI 模型,用以识别植物。 AIGC 常见名词解释,如 AIGC 意为人工智能生成内容,能进行 AIGC 的产品项目和媒介众多,包括语言文字类的 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等,语音声音类的 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,图片美术类的 Midjourney、Stable Diffusion 等。
2025-03-13
如何利用aigc生成高质量的logo?
利用 AIGC 生成高质量的 logo 可以参考以下方法: 1. 在 AIGC 1.0 时代,AIGC 主要起到产生参考图像的作用,可使用 ControlNet 但存在一定局限性,如无法精确控制某些特征材质,不过适合整体全身材质风格替换,能以正视图或手绘线稿图输入 ControlNet 进行控制。 2. 在 AIGC 2.0 时代,基于 Stable diffusion 的 Lora 模型训练可直出较高质量的形象,但对于要求较高的场景仍存在问题,如四肢比例失调、手指数量错误等,随着技术更新有望解决。 3. 可以使用 Midjourney 等生成式 AI 工具为企业创建徽标,将相关提示与企业信息结合,制作适合自身品牌个性和价值观的定制徽标,提示种类丰富并提供设计样例。 同时需要注意,目前的 AIGC 工具仍存在问题,真正的完美落地仍需要专业设计师的大量介入与修复。拥抱 AIGC 是为设计师提供辅助工具,而非完全取代传统设计方法或设计师。
2025-03-13
当前国内有哪些AIGC应用
当前国内的 AIGC 应用主要有以下一些: 语言文本生成类: “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
2025-03-12
本地部署大模型
以下是关于本地部署大模型的相关内容: SDXL 大模型的本地部署: 1. SDXL 的大模型分为两个部分: 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于细化生成的模型以获得更丰富的细节。 第二部分,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 下载模型:这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 3. 版本升级:在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 4. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 5. 启动使用:启动 webUI 后即可在模型中看到 SDXL 的模型,正常使用时先在文生图中使用 base 模型,填写提示词和常规参数进行生成。 从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 1. 下载并安装 Ollama: 点击进入 https://ollama.com/download ,根据电脑系统下载。 双击打开,点击“Install”。 安装完成后,将下方地址复制进浏览器中验证安装:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 方便测试,设备充足可下载更大模型): Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序。 复制命令行,粘贴回车,等待自动下载完成。 ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标里找到。 2. 下载对应的模型,选择模型并复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 下载的模型会保存到 D:\\ollama\\blobs 。 4. docker 安装:安装会下载一些文件,安装后更改目录,不要放在 C 盘。 5. Open webui 安装:输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 6. 错误解决:端口占用问题,运行下面两条命令可以解决。 7. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/
2025-03-17
消除大模型幻觉的方法
以下是关于消除大模型幻觉的方法的相关内容: 大模型出现幻觉的原因及部分解决办法: 1. 原因: 样本存在错误(Imitative Falsehoods),即学习的“教材”中有错误。 2. 解决办法: 上采样(Up Sampling)。 大模型存在的问题: 1. 输出结果具有不可预测性。 2. 静态的训练数据导致知识存在截止日期,无法即时掌握最新信息。 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:基于数学概率的文字预测导致会在没有答案的情况下提供虚假信息等。 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。 Prompt 可以减少幻觉的原因: Prompt 相当于给大模型提供了一个模板,包括对模型的要求、输入和输出的限制,使大模型在限制下得到概率最大的答案,从而提升返回的准确性。 RAG 是解决大模型问题的有效方案: RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可与微调结合使用,两者并不冲突。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。
2025-03-17
trad 如何添加Claude Sonnet 3.7 模型
要在 Trae 中添加 Claude Sonnet 3.7 模型,您可以按照以下步骤操作: 1. 下载 Trae:链接为 https://sourl.co/2DCmmW 。 2. 安装 Trae 后,自动进入 Trae 的客户端。 3. 查看对话框右下角,可以看到三种大模型的选择,其中包括 Claude3.5Sonnet、Claude3.7Sonnet、GPT4o 。 Claude 3.7 Sonnet 是一个混合推理模型,与市面上其他推理模型有所不同。它分为普通模式和扩展(推理)模式,可通过下拉菜单切换。普通模式是升级版的 Claude 3.5 Sonnet,回答迅速流畅;扩展模式适用于数学、物理、编程、复杂分析等场景,会进行思维链展开和推理。但需要注意的是,在 Trae 中切换模式是通过新窗口实现的。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
很抱歉,您提供的内容中没有关于家庭用私人部署 deepseek 电脑配置的相关信息。如果您需要配置一台价格在 5 万以下、能流畅运行的家庭用电脑,以下是一些建议: CPU:可以选择英特尔酷睿 i9 或 AMD 锐龙 9 系列的高端处理器。 显卡:选择 NVIDIA GeForce RTX 40 系列的高端显卡,如 RTX 4080 或 RTX 4070Ti。 内存:32GB 或 64GB 的 DDR5 内存。 存储:1TB 或 2TB 的 NVMe SSD 作为系统盘,再加上大容量的机械硬盘用于数据存储。 主板:选择与所选 CPU 兼容的高端主板,以确保稳定性和扩展性。 关于模型版本,Midjourney 的 V5 模型是较新且先进的版本,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。您可以通过添加“v 5”参数或使用“/settings”命令并选择 MJ Version 5 来使用该模型。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
以下是为您推荐的家庭用私人部署 deepseek 电脑配置,价格在 5 万以下,能够较流畅运行: CPU:Intel Core i913900K 或 AMD Ryzen 9 7950X 显卡:NVIDIA GeForce RTX 4080 或 RTX 4070Ti 内存:32GB 或 64GB DDR5 高频内存 硬盘:1TB NVMe M.2 固态硬盘 + 4TB 机械硬盘 主板:支持所选 CPU 的高端主板,如 Z790 或 X670 系列 电源:850W 及以上的高品质电源 关于模型版本,Midjourney 最新的模型是 V5 版本,于 2023 年 3 月 15 日发布。使用此模型,您可以在提示词末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持如 tile 重复图案等高级功能。它在风格范围、图像质量、细节表现、对提示的响应以及图像提示性能等方面都有显著改进。
2025-03-17
适合客户端使用的 asr 模型有什么
以下是一些适合客户端使用的 ASR 模型: 1. Ollama: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. FishAudio 的 Fish Agent: 集成了自动语音识别(ASR)和文本到语音(TTS)技术,无需传统的语义编码器/解码器,即可实现语音到语音的直接转换。 模型经过 700,000 小时的多语言音频内容训练,支持包括英语、中文在内的多种语言,能够精准捕捉和生成环境音频信息。文本方面由 Qwen2.53B 处理。 相关链接: https://huggingface.co/fishaudio/fishagentv0.13b https://github.com/fishaudio/fishspeech 3. Gemini: Gemini Nano1 和 Gemini Pro 模型在各种 Benchmark 上的自动语音识别(ASR)任务中表现出色,如在 FLEURS、多语言 Librispeech 以及语音翻译任务 CoVoST 2 等测试集中。 相关链接:未提及。
2025-03-17