直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型怎么进行评测的

回答

大模型的评测方式多种多样,以下为您介绍一些常见的评测方法和相关示例:

  1. 斯坦福发布的大模型排行榜 AlpacaEval:
    • 相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。
    • 从统计角度出发,检验什么评估数据可以最好地区分模型。
    • 支持两种模式的模型评估方式:
      • alpaca_eval:直接根据目标模型输出的响应来评估模型。
      • alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。
    • 评测过程分为以下 3 步:
      • 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。
      • 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 text-davinci-003 的输出。
      • 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
  2. 小七姐的测评:
    • 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。
    • 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。
    • 测评轮次:分为复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力等多轮,每轮都有不同的任务和模型测试次数。
  3. LLM 开源中文大语言模型及数据集集合中的评测:
    • FlagEval(天秤)大模型评测体系及开放平台:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力-任务-指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。
    • C-Eval:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。
    • SuperCLUElyb:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

斯坦福发布大模型排行榜AlpacaEval

图注:人类一致性:标注者与交叉标注集中人类多数票之间的一致性。价格:每1000个标注的平均价格。时间:计算1000个标注所需的平均时间。相对于人工标注,全自动化的AlpacaEval仅需花费约1/22的经济成本和1/25的时间成本。另外,还有一个关键问题:什么评估数据可以最好地区分模型。团队从统计角度出发,在AlpacaEval的所有子集上检验这个问题。下图显示了AlpacaEval每个子集的80个实例上每对模型的配对t检验的p值。例如,我们看到Self-Instruct数据集产生的统计能力最小,这表明可以从评估集中删除该数据集。图注:不同基准评估数据集的质量02如何使用AlpacaEval评估模型AlpacaEval支持两种模式的模型评估方式:alpaca_eval:直接根据目标模型输出的响应来评估模型。alpaca_eval evaluate_from_model:根据HuggingFace已注册模型或这API提供商来端到端评测模型。评测过程分为以下3步:1.选择一个评估集,并计算指定为model_outputs的输出。默认情况下,我们使用来自AlpacaEval的805个示例。Copy1.计算golden输出reference_outputs。默认情况下,在AlpacaEval上使用text-davinci-003的输出。2.通过annotators_config选择指定的自动标注器,它将根据model_outputs和reference_outputs计算胜率。这里建议使用alpaca_eval_gpt4或claude。根据不同的标注器,使用者还需要在环境配置中设定API_KEY。

小七姐:文心一言4.0、智谱清言、KimiChat 小样本测评

测评三家国产大模型,以同组提示词下ChatGPT 4.0生成的内容做对标参照[智谱清言](https://chatglm.cn/main/detail)[文心一言4.0](https://yiyan.baidu.com/)[Kimi Chat](https://kimi.moonshot.cn/chat/)[heading3]二、能力考量[content]复杂提示词理解和执行(结构化提示词)推理能力(CoT表现)文本生成能力(写作要求执行)提示词设计能力(让模型设计提示词)长文本归纳总结能力(论文阅读)[heading3]三、测评轮次[heading4]第一轮:复杂提示词理解和执行[content]1.任务一:Markdown+英文title提示词测试,1个任务4个模型(4次)2.任务二:Markdown+中文title提示词测试,1个任务4个模型(4次)3.任务三:中文title+自然段落提示词测试,1个任务4个模型(4次)[heading4]第二轮:推理能力(CoT表现)[content]逐步推理任务,遍历3个不同类型任务+4个大模型(12次)[heading4]第三轮:文本生成能力(写作要求执行)[content]根据提示词生成文本任务,遍历3个不同类型任务+4个大模型(12次)[heading4]第四轮:提示词设计能力(让模型设计提示词)[content]按提示词要求生成提示词,逐步推理任务,遍历3个不同类型任务+4个大模型(12次)[heading4]第五轮:长文本归纳总结能力(论文阅读)[content]按提供的长文本(上传或在线)进行归纳总结,逐步推理任务,遍历3个不同类型任务+4个大模型(12次)

LLM开源中文大语言模型及数据集集合

FlagEval(天秤)大模型评测体系及开放平台地址:[https://github.com/FlagOpen/FlagEval](https://github.com/FlagOpen/FlagEval)简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用AI方法实现对主观评测的辅助,大幅提升评测的效率和客观性。FlagEval(天秤)创新构建了“能力-任务-指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。C-Eval:构造中文大模型的知识评估基准:地址:[https://github.com/SJTU-LIT/ceval](https://github.com/SJTU-LIT/ceval)简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共13948道题目的中文知识和推理型测试集。此外还给出了当前主流中文LLM的评测结果。SuperCLUElyb:SuperCLUE琅琊榜地址:[https://github.com/CLUEbenchmark/SuperCLUElyb](https://github.com/CLUEbenchmark/SuperCLUElyb)简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于Elo评级系统的排行榜。

其他人在问
生图评测
以下是关于生图评测的相关内容: 评价维度: 提示词响应程度:包括语义理解,是否准确理解提示词含义并完整呈现内容;细节遵循,在细节上是否遵循提示词要求,如颜色、数量、位置等。 真实感与逼真度:物理规律是否符合,如光照、重力等;人体结构是否准确,无明显错误。 风格化能力:风格理解,是否准确理解提示词所要求的风格;风格多样性,能否生成不同风格的图片。 创意性与艺术性:美感是否符合美学原则,如构图、色彩搭配等;想象力是否能给出出乎意料的作品。 图像质量:清晰度与细节,图片是否清晰、细节是否丰富,有无模糊、噪点等影响观感的瑕疵;分辨率是否足够,是否适合不同应用场景。 案例分析: 阿强的功夫熊猫版如来神掌的 Midjourney 词力测试:目的是测词,看模型是否将功夫熊猫训练进去,并测试其角色、风格的一致性情况。不同的提示词组合产生了不同的效果,如“DreamWorks Animation,A Po Panda”词力强,动作可控;“Po Panda”有 1/4 概率出阿宝,动作自然可控等。在写绘画 prompt 时,遵循“若无必要,勿增实体”的理念,提前测试“词力”,用迭代思维写 prompt 有助于提高生图效率。 Midjourney 与 Google Imagen3 的对比测试:在画面控制力上,通过复杂的人物主体和画面要求进行测试。Imagen3 在某些场景(如充满神秘感的图书馆中女性取书的细节)的表现令人震惊,能完整还原画面内容、服饰、姿势,并兼顾构图。而 Midjourney 在多主体人物和描述词下,画面质量下降明显,如女性身材比例被压缩,某些细节未出现。
2025-03-08
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
模型评测
以下是关于模型评测的相关内容: Llama2 模型评测:为了解其中文问答能力,筛选了具有代表性的中文问题进行提问,测试了 Meta 公开的 Llama27BChat 和 Llama213BChat 两个版本,未做任何微调和训练。测试问题涵盖通用知识、语言理解等八个类别,使用特定 Prompt,测试结果见相应文档。通过测试发现,该模型对于中文问答的对齐效果一般,基于中文数据的训练和微调十分必要。 LORA 模型训练超入门级教程中的模型测试:最后从炼丹炉内取最小值的模型为最佳,在 Output 文件夹下取出模型。可用 Stable Diffusion 的 xyz 图表脚本来测试不同权重下 Lora 的表现,包括选择 x 轴、y 轴类型等操作。 斯坦福发布大模型排行榜 AlpacaEval:相对于人工标注,全自动化的 AlpacaEval 经济成本和时间成本低。还探讨了什么评估数据能最好地区分模型,以及 AlpacaEval 支持两种模式的模型评估方式,评测过程分为三步,包括选择评估集、计算输出等,并建议使用特定的自动标注器。
2025-02-11
大模型评测
以下是关于大模型评测的相关信息: 招聘信息:有大模型算法工程师/产品经理(实习)岗位在北京,工作包括大模型效果评测,要求研究生及以上学历,相关专业优先,有相关实习经验、代码能力强等。 开源评测体系及平台: FlagEval(天秤):旨在建立科学、公正、开放的评测基准、方法、工具集,创新构建了“能力任务指标”三维评测框架。 CEval:构造了覆盖多学科的中文知识和推理型测试集,并给出主流中文 LLM 的评测结果。 SuperCLUElyb:中文通用大模型匿名对战评价基准,发布了初步结果和基于 Elo 评级系统的排行榜。 测评示例:小七姐对文心一言 4.0、智谱清言、KimiChat 进行小样本测评,包括测评机制、目标、能力考量和多轮测评任务,如复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力等,每轮测评都有不同的任务和模型参与。
2025-01-14
superclue 在国内的评测里面什么地位,国外对标的评测是什么
在国内的评测中,SuperCLUE 是大模型时代 CLUE 基准的发展和延续,聚焦于通用大模型的综合性测评。在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 SuperCLUE 是中文语言理解测评基准 CLUE 的发展,发起于 2019 年,陆续推出了多种广为引用的测评基准。它根据多年的测评经验,构建了多层次、多维度的综合性测评基准。SuperCLUE 始终秉持中立、客观的第三方测评理念,采用自动化方式的客观评估,降低评测过程中的人为评估的不确定性。 国外对标的评测没有明确提及。
2025-01-07
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
如何使用cursor进行编程
以下是关于如何使用 Cursor 进行编程的相关信息: Cursor 旨在让您极其高效,是使用 AI 进行编码的最佳方式。您可以从代码库中获得最佳答案,参考特定文件或文档,一键使用模型中的代码。 它允许您使用指令编写代码,通过简单的提示就能更新整个类或函数。 Cursor 能通过预测您的下一个编辑,让您轻松完成更改。
2025-04-18
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
有没有全自动AI剪辑工具,丢入素材后可以根据我的规则要求设置进行多素材混剪
目前有一些工具可以帮助您实现全自动 AI 剪辑,以下为您介绍一种多素材混剪的方法: 1. 声音克隆: 工具:Fish Audio 操作: 准备一段需要克隆的音频(可以是类似屈原的古风声音,或自行录制一段)。 打开网站:https://fish.audio/zhCN/train/newmodel/ 。 上传准备好的音频,按照指引完成声音克隆。 进入声音库选择需要使用的声音,将第一步生成的文案输入,使用克隆好的声音生成对应的音频文件。 下载生成的音频文件备用。 2. 视频合成: 工具:Viggle.ai 操作: 在网上下载“回答我”的原视频。 打开 Viggle.ai 网站,登录后进入视频合成功能:https://viggle.ai/createmix 。 上传“回答我”原视频和第二步生成的人物形象图,生成新版本的“回答我”视频。 预览效果,满意后下载合成好的新视频。 3. 视频剪辑: 工具:剪映 操作: 打开剪映软件(手机或电脑版均可)。 导入第二步合成好的新视频和第一步生成的音频文件。 将音频与视频时间轴对齐,确保声音和画面同步,添加字幕等。 如需叠加特殊背景,可以导入自己的背景图(如楚国风景)。 预览整个视频,检查效果,微调后导出最终视频(建议 MP4 格式)。
2025-04-09