直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

结合有助于减肥的主题,谈谈其相关功能性食品的设计思路。

回答

结合有助于减肥的主题,功能性食品的设计思路可以从以下几个方面考虑:

  1. 控制能量摄入:设计低卡路里、高纤维的食品,如全麦面包、燕麦片、蔬菜沙拉等,这些食品能够提供饱腹感,减少食欲,从而控制能量摄入。
  2. 增加蛋白质摄入:蛋白质是身体的重要组成部分,能够帮助维持肌肉质量,同时也能够提供饱腹感,减少食欲。因此,可以设计高蛋白的食品,如鸡胸肉、火鸡肉、豆腐、鸡蛋等。
  3. 控制碳水化合物摄入:碳水化合物是身体的主要能量来源,但是过量的碳水化合物摄入会导致体重增加。因此,可以设计低糖、低 GI(血糖指数)的食品,如糙米、全麦面包、燕麦片、蔬菜等。
  4. 增加膳食纤维摄入:膳食纤维能够提供饱腹感,减少食欲,同时也能够促进肠道蠕动,预防便秘。因此,可以设计高纤维的食品,如全麦面包、燕麦片、蔬菜、水果等。
  5. 添加功能性成分:除了控制能量摄入和增加营养成分摄入外,还可以添加一些功能性成分,如茶多酚、儿茶素、白藜芦醇等,这些成分能够帮助减肥、降低血脂、抗氧化等。
  6. 设计方便食品:为了方便消费者食用,可以设计一些方便食品,如即食鸡胸肉、即食燕麦片、即食蔬菜沙拉等,这些食品不仅方便食用,而且也能够控制能量摄入和增加营养成分摄入。 总之,结合有助于减肥的主题,功能性食品的设计思路应该是控制能量摄入、增加营养成分摄入、添加功能性成分、设计方便食品等,以满足消费者的需求。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
谈谈人工智能伦理建设的内容、体系
人工智能伦理建设的内容和体系包括以下方面: 在国际层面,例如美国国会的相关法案,提出要为联邦人工智能研究、开发和示范活动提供跨机构协调,制定自愿共识标准和指南,开展教育和培训活动等。 在国家层面,以中国为例,《国家人工智能产业综合标准化体系建设指南(征求意见稿)》中,行业应用标准方面,涵盖智能制造、智能家居、智慧城市、科学智算等重点领域,规范了各领域的技术要求和应用场景。安全/治理标准方面,包括全生命周期的安全要求,如基础安全、数据与模型安全等,以及治理要求,如伦理风险评估、公平性与可解释性等伦理治理技术要求与评测方法、伦理审查等标准。 在欧盟层面,规定人工智能应符合欧盟价值观、基本权利和自由,是以人为本的技术,最终目的是提高人类福祉。为确保公众利益的保护,应为高风险人工智能系统制定统一规则,且规则应与相关宪章和原则保持一致,并符合国际贸易承诺。同时指出人工智能能带来广泛效益,但也可能根据应用和发展水平产生风险和损害。
2025-01-02
谈谈你对AI/AIGC的理解
AI(人工智能)是指让计算机模拟人类智能的技术。机器学习是人工智能的重要组成部分,包括监督学习、无监督学习和强化学习等方式。监督学习基于有标签的训练数据,学习输入与输出的映射关系;无监督学习则在无标签数据中自主发现规律,例如聚类。强化学习从反馈中学习以最大化奖励或最小化损失。深度学习参照人脑构建神经网络,其中 Transformer 模型基于自注意力机制处理序列数据,比 RNN 更适合处理长距离依赖。 AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,能生成文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)是不同的内容生成方式。AIGC 由人工智能生成,可快速大规模生成内容;UGC 由用户生成,内容丰富多样反映用户想法;PGC 由专业团队或机构生成,内容质量高专业性强。
2024-12-29
谈谈对人工智能的看法
以下是关于对人工智能的一些看法: 从吴恩达的观点来看: 存在对人工智能放大人类负面影响的担忧,可在技术层级如通过 RLHF 解决类似于社会歧视等问题。 担心人工智能导致失业,但实际每个工作组成部分不单一,人可与人工智能协同,如放射科医生岗位虽曾被看低但未失业。 对于人工智能导致人类毁灭的观点,其论点缺乏具体性和现实依据。人类有控制比自身强大事物的经验,未完全控制的事物如飞机仍有价值且安全。同时,AI 可成为解决气候变化和大流行病等问题的关键。 从【好文推荐】来看: 作为 AI 行业的投资人,挑选了认为被经常提及的三个问题进行讨论,包括这轮 AI 有无被证明的杀手级应用、大模型是否拿走绝大部分利润、机会属于大厂还是创业公司等。 从奥特曼的访谈来看: 对通用人工智能(AGI)的定义因人而异。 认为一个系统能显著加快全球科学发现速度是极其了不起的,大多数经济增长源自科学和技术进步。 即便看到系统有新颖的科学直觉也将不可思议。
2024-09-05
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
二次元与ai有什么结合变现的思路
以下是二次元与 AI 结合变现的一些思路: 1. 以 API 形式链接 Zion 和 Coze,为 dify、kimi 等大模型和智能体制作收费前端。您可以参考相关教程,如: 2. 自定义配置变现模版的 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接如下: 支付: Actionflow: 权限: 代码组件: 3. 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 4. Zion 支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 在摊位信息方面,有以下与二次元和 AI 结合的示例: 1. 乐易科学院:通过 AI 的技术,结合量子、暗物质、天体运行规律等能量形式,从科学、物理学、天文学、心理学等方面讲解国学和传统文化。可以通过技术方式批八字、调风水、进行性格色彩分析,让每个人找到方向,成为更好的自己。摊位区域为 C,编号 27,类型为玄学+科学。 2. AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发,摊位区域为 C,编号 76,类型为游戏宣传。 3. AI 人像摄影绘画,摊位区域为 C,编号 77,类型为照片。 4. 主题是:B2B AI 营销与 AI 落地项目快速落地,涵盖 3 个方向: AI 训练 to b,出应用,智能体 agent,文生图生视频都涉及。 美国独立站搭建,工作流给模特戴上珠宝饰品。 Google seo 与 AI 结合。 在 AI 原画设计方面,Niji·journey 5 是一款在二次元领域表现出色的绘画 AI 工具。二次元作品具有较高的规律性,角色、场景和物品往往有明显的风格特征和设计规律,AI 能够更容易地从海量训练数据中学习和总结这些规律。同时,二次元角色设计更注重创意和审美,而非真实世界的物理规律,这使得 AI 在设计过程中可以专注于发挥其“想象力”和“创造力”。
2025-03-24
ai绘画提示词思路和模板
以下是关于 AI 绘画提示词的思路和模板的相关内容: 提示词模板的相关网站: 1. Majinai: 2. 词图: 3. Black Lily: 4. Danbooru 标签超市: 5. 魔咒百科词典: 6. AI 词汇加速器: 7. NovelAI 魔导书: 8. 鳖哲法典: 9. Danbooru tag: 10. AIBooru: 描述逻辑: 通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 辅助工具和方法: 1. 利用相关功能型辅助网站,如 http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 2. 参考 https://ai.dawnmark.cn/,其每种参数有缩略图可参考,更直观选择提示词。 3. 去 C 站(https://civitai.com/)抄作业,每张图有详细参数,可复制粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA,也可选取部分好的描述词,如人物描写、背景描述、小元素或画面质感等。 在制作游戏 PV 时的应用: 1. 在故事背景创作阶段,结合 chatGPT 发散制作游戏背景世界观,针对话术改进故事,筛选满意的故事框架内容优化。 2. 引导 ChatGPT 用分镜形式描述。 3. 使用 new bing 共创的故事分镜。 4. 利用 ChatGPt 制作 midjourney 提示词工具,使用生动感性术语和具体细节描述场景,告知 MJ 格式后进入 midjourney 绘图,包括制作 logo。 5. 统一 MJ 风格描述词,建立 AI 描述词模板,根据不同内容更换(如视角、景别、情绪词、画面色调),生成不同画面,提高效率和统一性。 下次作图时,可先选择模板,点击倒数第二个按钮快速输入标准提示词,查看加入标准提示词后的效果。
2025-03-22
RAG的优化思路
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 LLM 需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在黑盒不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在学不会的风险。 2. 数据库的数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在优化 RAG 性能方面,对于向量化基本平权的情况,可引入来源机制进行改进,对向量化的数据进行综合评分,如相似度置信度等,然后再进行 rebank。特别是对于私有化数据,业务方清楚数据的置信度,有优化空间。
2025-03-18
关于使用deepseek的创业思路有什么
以下是一些关于使用 DeepSeek 的创业思路: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计阈值系统,后续根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不稳定)。 用户对 DeepSeek 的使用场景包括但不限于: 1. 脑爆活动方案。 2. 生成会议纪要和方案,稍加修改即可呈现高质量的会议总结。 3. 本地搭建超级 AI 助手。 4. 与飞书结合批量处理客户评论。 5. 分析总结复盘内容。 6. 生成专业专用软件详细使用过程。 7. 写课程方案、做产品最小 MVP、做创业想法梳理。 8. 检索资料搜索。 9. 编程,推荐装机硬件。 10. 写小说大纲和细纲,系统查资料,评估买车等。 11. 做雷达算法框架、自媒体公众号文章。 12. 批处理,完成原型设计,产品深度思考,勾画 MVP 关键点,评估。 13. 做项目工作。 14. 教小朋友学英语。 15. 学习量化交易。 16. AI 咨询,为企业赋能。 17. 自动提醒团队形成。 18. 结合飞书多维表格+DeepSeek 搭建创业软件小助手,一句话生成软件落地方案。 19. 解决数学建模的解题思路。 20. 问诊推荐感冒中成药。
2025-02-26