直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有支持语音的外语对话ai吗

回答

以下是一些支持语音的外语对话 AI:

  1. Google Assistant:支持多种语言,可用于日常对话练习和词汇学习。使用方法是设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。
  2. ChatGPT:能够模拟对话练习,帮助提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习,可以询问语法、词汇等问题,甚至模拟实际交流场景。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:如何用 AI 学习一门外语

功能:Google Assistant支持多种语言,可以用来进行日常对话练习和词汇学习。使用方法:设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。

问:如何用 AI 学习一门外语

功能:ChatGPT可以用来模拟对话练习,帮助你提高语言交流能力。使用方法:在聊天界面选择目标语言,与AI进行对话练习。可以询问语法、词汇等问题,甚至模拟实际交流场景。

GPT、DALL·E、Sora,为什么 OpenAI 可以跑通所有 AGI 技术栈?

OpenAI直接用prompt让GPT-4调用bio这个工具记录需要记忆的内容(「to=xxx」是调用内部工具的语法,比如"to=python"是GPT调用code interpreter的方式)。然后每次新的对话开始时,在prompt的最后直接加上所有之前的记录的内容(## Model Set Context)。就是这么简单粗暴。GPTs怎么做的?其实很大程度就是OpenAI的Assistant API加个简单得有点简陋的前端。(PS:现在有了OpenAI Assistant API后,你发现加个UI就可以很轻松的复刻OpenAI上线的大部分功能。)那么语音对话呢?你会发现就是换了一个prompt,告诉GPT尽量生成短的内容,不要轻易生成列表和代码。语音合成用TTS API,识别用whisper API(可能有针对上下文的优化),结束。这些选择看上去非常暴力,而且会给OpenAI增加开销(长的prompt会明显增大开销),但是OpenAI仍然选择这么做,因为这让OpenAI将大部分精力都花在模型本身的研发上,同时这也是OpenAI的方法论的极致体现,我们下面会提到。这种方法论让OpenAI追求一个大的通用的模型,避免一切定制和特化,就像最近Sam说的一样,希望GPT-5的出现能让模型微调失去意义;这样OpenAI就变成了完完全全的SaaS服务。

其他人在问
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
有什么适合外语场景,特别是英语与日语的 AI 工具吗?
以下是一些适合外语场景,特别是英语与日语的 AI 工具: 1. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点在于实际交流所需语言技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合练习和反馈。注册并选择语言,使用多种练习模式学习。 2. AI 对话助手: ChatGPT:可模拟对话练习,提高语言交流能力。在聊天界面选择目标语言,与 AI 对话,询问语法、词汇等问题,模拟实际交流场景。 Google Assistant:支持多种语言,可进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入互动。 3. 语言学习平台: FluentU:使用真实世界视频,通过 AI 生成个性化词汇和听力练习。选择语言,观看视频并完成练习,积累词汇和提升听力。 Memrise:结合 AI 技术,根据记忆曲线提供复习和练习,增强记忆效果。选择语言,使用词汇卡和练习学习。 4. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练获取反馈和建议。 Grammarly:提高写作语法和词汇准确性,支持多种语言。将写作内容粘贴到编辑器中获取改进建议。 5. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入内容查看结果和例句。 Reverso Context:提供单词和短语翻译及上下文例句,帮助理解和学习用法。输入单词或短语查看翻译和例句。 此外,还有一些其他工具,如 Speak、Call Annie 等也可用于提升外语口语能力。使用这些工具时,建议结合实际对话练习,如参与语言交换、加入学习小组或与母语者对话,并定期复习和持续实践。
2025-03-12
外语配音工具推荐
目前在 AI 领域,常见的外语配音工具包括: 1. 剪映:功能丰富,提供多种外语配音选项。 2. 讯飞配音:具有较高的语音合成质量和多种外语声音可供选择。 您可以根据自己的需求和使用习惯选择适合您的外语配音工具。
2025-02-07
如何利用AI学习外语
利用 AI 学习外语可以参考以下方法和工具: 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 推荐的语言学习应用: 1. Duolingo:功能是使用 AI 来个性化学习体验,根据您的进度和错误调整练习内容。通过游戏化的方式提供词汇、语法、听力和口语练习。使用方法为下载应用,选择要学习的语言,并按照课程指引进行学习。 通过这些 AI 工具和方法,可以有效地学习一门外语,提升语言能力。坚持使用,并结合实际交流,不断进步。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-27
如何用ai学习外语
使用 AI 学习外语可以通过以下方法: 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 以下是一些推荐的语言学习应用: 1. Duolingo:功能是使用 AI 来个性化学习体验,根据您的进度和错误调整练习内容。它通过游戏化的方式提供词汇、语法、听力和口语练习。使用方法为下载应用,选择要学习的语言,并按照课程指引进行学习。 通过这些 AI 工具和方法,可以有效地学习一门外语,提升语言能力。坚持使用,并结合实际交流,不断进步。但需注意,内容由 AI 大模型生成,请仔细甄别。
2024-08-31
如何用AI学习一门外语
使用AI工具来学习一门外语可以显著提升学习效率和效果。以下是一些方法和推荐的AI工具,帮助你更好地学习外语: 1. 语言学习应用 1.1. Duolingo 功能:Duolingo使用AI来个性化学习体验,根据你的进度和错误调整练习内容。它通过游戏化的方式提供词汇、语法、听力和口语练习。 使用方法:下载应用,选择要学习的语言,并按照课程指引进行学习。 1.2. Babbel 功能:Babbel结合AI技术,提供个性化的课程和练习,重点在于实际交流所需的语言技能。 使用方法:注册账户,选择语言课程,按照学习计划进行学习。 1.3. Rosetta Stone 功能:Rosetta Stone使用动态沉浸法,通过AI分析学习进度,提供适合的练习和反馈。 使用方法:注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)进行学习。 2. AI对话助手 2.1. ChatGPT 功能:ChatGPT可以用来模拟对话练习,帮助你提高语言交流能力。 使用方法:在聊天界面选择目标语言,与AI进行对话练习。可以询问语法、词汇等问题,甚至模拟实际交流场景。 2.2. Google Assistant 功能:Google Assistant 支持多种语言,可以用来进行日常对话练习和词汇学习。 使用方法:设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。 3. 语言学习平台 3.1. FluentU 功能:FluentU使用真实世界的视频,通过AI生成个性化的词汇和听力练习。 使用方法:选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 3.2. Memrise 功能:Memrise结合AI技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。 使用方法:选择学习语言,使用应用提供的词汇卡和练习进行学习。 4. 发音和语法检查 4.1. Speechling 功能:Speechling 提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。 使用方法:录制语音,提交给AI系统或人类教练,获取反馈和改进建议。 4.2. Grammarly 功能:Grammarly 可以帮助你提高写作的语法和词汇准确性,支持多种语言。 使用方法:将写作内容粘贴到Grammarly编辑器中,获取语法和词汇改进建议。 5. 实时翻译和词典工具 5.1. Google Translate 功能:Google Translate 提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。 使用方法:输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 5.2. Reverso Context 功能:Reverso Context 提供单词和短语的翻译及上下文例句,帮助理解和学习用法。 使用方法:输入单词或短语,查看翻译和例句,学习实际使用场景。 学习方法建议 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用AI对话助手模拟真实对话场景。 4. 定期复习:使用AI工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 通过这些AI工具和方法,可以有效地学习一门外语,提升语言能力。坚持使用,并结合实际交流,不断进步。
2024-05-14
国内外语言大模型评估
国内外对于语言大模型(Large Language Models, LLMs)的评估通常涉及多个方面,包括但不限于模型的性能、应用效果、伦理和安全性等。以下是一些评估的维度和考虑因素: 性能评估: 1. 准确性:模型在特定任务上的表现,如文本分类、情感分析、机器翻译等。 2. 泛化能力:模型对于未见过的数据的处理能力。 3. 鲁棒性:模型抵抗输入扰动和异常值的能力。 4. 响应时间:模型处理请求的速度。 应用效果评估: 1. 用户体验:模型在实际应用中的用户满意度和接受度。 2. 业务影响:模型对业务流程和效率的影响。 3. 成本效益:模型的运行成本与其带来的效益之间的比较。 伦理和安全性评估: 1. 偏见和公平性:模型是否存在潜在的偏见,是否对所有用户群体公平。 2. 隐私保护:模型是否符合数据保护法规,用户数据是否安全。 3. 透明度:模型的决策过程是否透明,用户是否了解其工作原理。 4. 可解释性:模型的输出是否可解释,用户能否理解其决策逻辑。 国内外评估实践: 1. 学术评估:学术界通过发表研究论文来评估和比较不同模型的性能。 2. 行业报告:市场研究机构发布报告,评估模型的市场占有率和用户反馈。 3. 标准化测试:如MLPerf等组织提供的标准化测试,用于评估和比较不同模型的性能。 4. 开源社区:开源社区通过共享测试数据集和基准来评估模型性能。 5. 企业内部评估:企业内部通过实际应用场景来测试和评估模型的效果。 评估工具和平台: 国际:MMLU、GSM8K等。 国内:CEval、SuperCLUE等。 注意事项: 跨文化差异:不同文化背景下的语言使用习惯可能影响模型评估。 法规遵从:评估时需考虑不同国家的法律法规,如欧盟的GDPR。 进行语言大模型评估时,需要综合考虑上述多个维度,并结合具体的应用场景和业务需求。同时,随着技术的发展和市场的变化,评估标准和方法也在不断演进。
2024-04-17
coze 语音克隆
以下是关于语音克隆的相关信息: 有一款适合小白用户的开源数字人工具,具有以下特点和功能: 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G + 3G 语音模型包,启动模型即可。 GitHub 链接: 官网链接: 另外,CosyVoice 声音克隆仅需几秒音频样本,无需额外训练数据,可控制情绪情感、语速、音高。 详细内容:https://xiaohu.ai/p/10954 项目地址:https://funaudiollm.github.io 在线演示:https://modelscope.cn/studios/iic/CosyVoice300M
2025-04-12
语音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用步骤: 特点: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且自然。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 提供预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用步骤: 1. 前置数据获取处理: 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 2. GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 3. 声音复刻:开启声音复刻之旅,可实现跨多语种语言的声音。 相关资源: GitHub:https://github.com/RVCBoss/GPTSoVITS 视频教程:https://bilibili.com/video/BV12g4y1m7Uw/ 注册 colab 并启动准备:点击进入按照步骤注册即可 https://colab.research.google.com/scrollTo=Wf5KrEb6vrkR&uniqifier=2 ,新建笔记本,运行脚本启动 GPTSo VITS,整个过程比较漫长,需要耐心等待,可以整个脚本一起运行,也可以一段一段运行;运行过程包括克隆项目代码库、进入项目目录、安装 Python 依赖包、安装系统依赖、下载 NLTK 资源、启动 Web UI,运行成功后出现 public URL。 实践样本: AIyoyo 普通话 满江红 AIyoyo 粤语版 满江红
2025-04-12
文字转语音
以下是关于文字转语音的相关内容: DubbingX2.0.3: 界面与国内版相同,使用了沉浸式翻译功能,可能看起来较乱。 第一个选项是文字转语音,与国内版相同,不做重复演示。 重点介绍第二项“创建您的语音克隆”: 上传语音(想克隆的声音原始文件)。 给声音命名,方便以后配音选择。 选择语言。 勾选相关选项,点击转变即可生成。 注意:原音频若有背景音乐,最好在剪影中去除,以使生成的音色模型效果更好、更纯净。 Hedra: 可以直接文字转语音,目前有 6 个语音。 也可以直接上传音频。
2025-04-11
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper 进行语音转文字,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。此项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API 。 语音转文本(Speech to text): 介绍:语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持 mp3、mp4、mpeg、mpga、m4a、wav 和 webm 等输入文件类型。 快速入门: 转录:转录 API 的输入是要转录的音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可添加更多带有相关选项的form 行设置其他参数。 翻译:翻译 API 输入任何支持语言的音频文件,必要时转录成英语,目前仅支持英语翻译。 更长输入:默认 Whisper API 仅支持小于 25MB 的文件,若音频文件更长,需分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 提示:可使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2025-04-08
实时翻译视频语音
以下是为您整理的相关信息: 实时翻译视频语音的工具: StreamSpeech:这是一个实时语言翻译模型,能够实现流媒体语音输入的实时翻译,输出目标语音和文本,具有同步翻译、低延迟的特点,还能展示实时语音识别结果。 给视频配音效的 AI 工具: 支持 50 多种语言的配音,音质自然流畅,提供实时配音功能,适用于直播和演讲,能将语音转录为文本,方便后期字幕制作和编辑。 Vidnoz AI:支持 23 多种语言的配音,音质高保真,支持文本转语音和语音克隆功能,提供语音参数自定义和背景音乐添加工具,提供面向个人和企业的经济实惠的定价方案。 在选择视频配音工具时,请考虑支持的语言数量、语音质量、自定义选项和价格等因素。
2025-04-07
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后一次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,包括改进的语音转文本和文本转语音功能。 语音转文本模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 直播回放:https://www.youtube.com/watch?v=lXb0L16ISAc 说明文档:https://openai.com/index/introducingournextgenerationaudiomodels/ 内容由 AI 大模型生成,请仔细甄别。
2025-04-01
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07