直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

什么是qwen模型?

回答

Qwen(通义千问)是由阿里巴巴推出的大模型。

Qwen 具有以下特点和成就:

  1. 是国内唯一出现在 OpenAI 视野里,可以参与国际竞争的国产大模型。
  2. 多次冲进 LMSys 榜单,得分不断提高。
  3. 开源模型累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用,尤其在企业级方面。
  4. Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,包括 Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 和 Qwen2-72B。
  5. 除英语和中文外,还接受过另外 27 种语言的数据训练。
  6. 在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3。
  7. 增大了上下文长度支持,最高达到 128K tokens(Qwen2-72B-Instruct)。
  8. 在权威模型测评榜单 OpenCompass 中,Qwen1.5-110B 已领先于文心 4.0 等一众中国闭源模型,Qwen2-72B 整体性能相比 Qwen1.5-110B 又取得大幅提升,在 MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench 等国际权威测评中获十几项世界冠军,超过美国的 Llama3。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

[title]本地部署资讯问答机器人:Langchain+Ollama+RSSHub实现RAGGemma:Gemma是由Google推出的轻量级模型,Google表示,“Gemma 2B和7B与其他开放式模型相比,在其规模上实现了同类最佳的性能。”本次开发,下载的是7B模型。Mistral:Mistral是由欧洲法国Mistral AI团队推出的大模型,该模型采用了分组查询注意力(GQA)以实现更快的推断速度。本次开发,下载的是7B模型。Mixtral:Mixtral也是由Mistral AI团队推出的大模型,但Mixtral是一个8*7B的MoE模型,在大多数基准测试中都优于Llama 2 70B和GPT-3.5。Qwen:Qwen(通义千问)是由阿里巴巴推出的大模型,本次开发,下载的是7B模型。万物皆可RSS巧妇难为无米之炊。不管是获取日常新闻,还是获取A股行情,都需要有稳定靠谱的数据源。大家可能第一时间会想到爬虫,但自己去搭建和维护这样一个爬虫系统还是比较麻烦的。有没有其他更好的方式呢?这就需要用到「上古神器」 RSS了!大家可能会觉得RSS已经过时了。现如今,打开手机,今日头条、微博、微信等APP时不时就会给你推送最新的资讯,日常生活工作好像没有用到RSS的场景。确实,大部分情况下,我们想要获取资讯,手机APP基本够用了。但是,如果你想针对一些特定的需求,需要从某些网站上获取最新通知或相关信息呢?比如,获取https://openai.com/blog的最新更新获取https://www.producthunt.com每天的热门产品获取https://github.com/trending每天的热门开源项目

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

[title]Qwen 2开源了模型性能超越目前所有开源模型和国内闭源模型[heading1]相关参考信息可以说,Qwen是国内唯一出现在OpenAI视野里,可以参与国际竞争的国产大模型。不久前,OpenAI创始人奥特曼在X上转发了一条OpenAI研究员公布的消息,GPT-4o在测试阶段登上了Chatbot Arena(LMSys Arena)榜首位置,这个榜单是OpenAI唯一认可证明其地位的榜单,而Qwen是其中唯一上榜的国内模型。早些时候,有人做了个LMSys榜单一年动态变化视频。过去一年内,国产大模型只有Qwen多次冲进这份榜单,最早出现的是通义千问14B开源视频Qwen-14B,后来是Qwen系列的72B、110B以及通义千问闭源模型Qwen-Max,得分一个比一次高,LMSys也曾官方发推认证通义千问开源模型的实力。在顶尖模型公司的竞争中,目前为止中国模型只有通义千问真正入局,能与头部厂商一较高下。开发者用脚投票的结果,显示了Qwen系列的受欢迎程度。目前为止,Qwen系列开源模型的累计下载量突破了1600万,国内外有海量开发者都基于Qwen开发了自己的模型和应用,尤其是企业级的模型和应用。Qwen的很多忠实拥趸是海外开发者,他们时常在社交平台发表“我们为什么没有这种模型”的溢美之词(配图详见附件)。可以说,通义大模型用行动证明了开源开放的力量。七、为什么大模型的生态建设如此重要?AI大模型是全球数字技术体系的竞争,这个体系包括芯片、云计算、闭源模型、开源模型、开源生态等等。中国信息化百人会执委、阿里云副总裁安筱鹏指出,全球AI大模型竞争的制高点是AI基础大模型,因为基础大模型决定了产业智能化的天花板,商业闭环的可能性,应用生态的繁荣以及产业竞争的格局。与此同时,开源生态在整个技术体系的竞争中也有着至关重要的作用。

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

5种尺寸的预训练和指令调整模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;(Qwen2-57B-A14B这个模型可以重点看看除英语和中文外,还接受过另外27种语言的数据训练;在大量基准评估中表现出最先进的性能;在大量基准评估中获得SOTA性能。代码和数学性能显著提高,全面超越llama3增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。HF最新榜第一72B和7B可处理128k上下文57B-A14B可处理64k上下文0.5B和1.5B可处理32k上下文相比2月推出的通义千问Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升。(图说:在上海人工智能实验室推出的OpenCompass大模型测评榜单上,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型)通义千问Qwen2系列模型大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,Qwen2-72B获十几项世界冠军,超过美国的Llama3。(图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)

其他人在问
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
qwen
Qwen 2 已开源,具有以下特点和优势: 1. 提供 5 种尺寸的预训练和指令调整模型,包括 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。 2. 除英语和中文外,还接受过另外 27 种语言的数据训练。 3. 在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3。 4. 增大了上下文长度支持,最高达到 128K tokens(Qwen272BInstruct),72B 和 7B 可处理 128k 上下文,57BA14B 可处理 64k 上下文,0.5B 和 1.5B 可处理 32k 上下文。 5. 相比 2 月推出的通义千问 Qwen1.5,实现了整体性能的代际飞跃。在权威模型测评榜单 OpenCompass 中,此前开源的 Qwen1.5110B 已领先于文心 4.0 等一众中国闭源模型,Qwen272B 整体性能相比 Qwen1.5110B 又取得了大幅提升。在 MMLU、GPQA、HumanEval、GSM8K、BBH、MTBench、Arena Hard、LiveCodeBench 等国际权威测评中,Qwen272B 获十几项世界冠军,超过美国的 Llama3。 Qwen2 系列模型的性能突破具有重要意义: 1. 在中国大模型领域,开源模型显示出超越最强闭源模型的势头。 2. 中国的开源大模型,从性能到生态都具备了媲美美国 Llama3 的能力。 通义千问大模型的持续优化和进步,主要依赖强大的大模型研发能力、领先的基础设施能力以及开源社区的充分支持。阿里云是全球唯一一家积极研发先进 AI 模型并且全方位开源的云计算厂商。 体验 Qwen2 系列模型的途径: 1. 已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。 2. Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址:。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 此外,玉宝搞过一个 LLM 的在线评估,里面可以看到国内各个闭源大模型的 HUMANEVAL 测评得分,可以和 QWEN2 对比,网址为:https://www.llmrank.cn/ 。除了美国 Llama 开源生态之外,通义千问已成为全球开发者的另一主流选项。
2025-03-10
qwen.chat
以下是关于 Qwen 的相关信息: 2023 年度中文大模型基准测评报告中提到了 Qwen 的相关模型,如 Qwen14BChat、Qwen72BChat。 1 月 28 日的 Xiaohu.AI 日报中,大年三十发布了 Qwen2.5Max 模型,这是通义千问推出的大型专家模型(MoE),通过 SFT 和 RLHF 策略后训练,性能与顶尖模型竞争,在多个基准测试中超越了 DeepSeek V3,引发了 AI 社区对大规模专家模型的高度关注。相关链接包括: Blog: Qwen Chat: (选择 Qwen2.5Max 模型) API: HF Demo: 1 月 28 日的 Xiaohu.AI 日报中还提到阿里云发布了 Qwen2.5VL:新一代视觉语言模型。
2025-02-21
Qwen 2.5 max 如何访问
Qwen 2.5 Max 可以通过以下方式访问: 1. 目前,Qwen 2.5 Max 已在阿里云百炼平台上架,模型名称为 qwenmax20250125,企业和开发者都可通过阿里云百炼调用新模型 API。 2. 同时,也可以在全新的 Qwen Chat(https://chat.qwenlm.ai/)平台上使用 Qwen 2.5 Max,直接与模型对话,或者使用 artifacts、搜索等功能。 此外,您还可以通过以下链接获取更多相关信息:
2025-02-13
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14