直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

推荐一下个人可以使用的通过对话微调的模型

回答

以下是一些个人可以使用的通过对话微调的模型相关信息:

会话补全(Chat completions)

  • GPT-3.5 系列中,gpt-3.5-turbo 和 text-davinci-003 有相似能力,但 gpt-3.5-turbo 价格仅为 text-davinci-003 的十分之一,在多数情况下更推荐使用 gpt-3.5-turbo。不过,gpt-3.5-turbo 不支持微调,从 2023 年 3 月 1 日起,只能对基于 GPT-3.5 的模型进行微调。

微调(Fine-tuning)

  • 案例研究:
    • 客户支持聊天机器人:通常包含相关上下文、对话摘要及最近消息,可能需要几千个示例处理不同请求和客户问题,建议审查对话样本确保代理消息质量,可使用单独文本转换微调模型生成摘要。
    • 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,确保完成基于所提供描述,若常查阅外部内容,自动添加此类内容可提高性能,若描述基于图像,提取图像文本描述可能有帮助。

模型(Models)

  • GPT-3.5 模型可理解和生成自然语言或代码,其中功能最强大、最具成本效益且针对聊天优化的型号是 gpt-3.5-turbo,建议使用它而非其他 GPT-3.5 模型,因其成本更低。
    • gpt-3.5-turbo:功能强大,针对聊天优化,成本低,会使用最新模型迭代更新,最大 Token 数 4096,训练数据截至 2021 年 9 月。
    • gpt-3.5-turbo-0301:2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。
    • text-davinci-003:能完成任何语言任务,支持文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。
    • text-davinci-002:与 text-davinci-003 类似,使用监督微调而非强化学习训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。
    • code-davinci-002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。

请注意,OpenAI 模型具有不确定性,相同输入可能产生不同输出,将温度设置为 0 可使输出大部分具有确定性,但可能仍有少量可变性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

会话补全(Chat completions)

gpt-3.5-turbo和text-davinci-003两个模型拥有相似的能力,但前者的价格只是后者的十分之一,在大部分情况下,我们更推荐使用gpt-3.5-turbo。对于许多开发者来说,转换就像重写和重新测试prompt一样简单。例如,假设你使用下面的补全prompt来让英语转换成法语:一个对应的对话会话是这样的:或者甚至只要用户消息:[heading2]常见问题[heading3]gpt-3.5-turbo模型支持微调(fine-tuning)吗?[content]不支持。从2023年3月1日起,你只能对基于GPT-3.5的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南[heading3]你们会把通过API获取到的数据进行保存吗?[content]从2023年3月1日起,我们会将你通过API发送给我们的数据保留30天但不会使用这些数据来提升模型。了解更多关于我们的数据使用条款。[heading3]添加调节层[content]如果你想要给聊天API的输出添加一个调节层,你可以根据我们的调节指南,以避免违反OpenAI使用政策的内容被展示出来。

微调(Fine-tuning)

聊天机器人通常会包含有关对话的相关上下文(订单详细信息)、到目前为止的对话摘要以及最近的消息。对于这个用例,相同的过去对话可以在数据集中生成多行,每次都有稍微不同的上下文,对于每个代理生成作为完成。这个用例将需要几千个示例,因为它可能会处理不同类型的请求和客户问题。为确保高质量的性能,我们建议审查对话样本以确保代理消息的质量。可以使用单独的文本转换微调模型生成摘要。数据集可能如下所示:在这里,我们有意分离不同类型的输入信息,但在提示和完成之间以相同的格式维护客户代理对话框。所有的完成都应该只由代理完成,我们可以\n在进行推理时用作停止序列。[heading4]案例研究:基于技术属性列表的产品描述[content]在这里,将输入数据转换为自然语言很重要,这可能会带来卓越的性能。例如,以下格式:不会像以下那样工作:为了获得高性能,请确保完成是基于所提供的描述。如果经常查阅外部内容,则以自动方式添加此类内容将提高性能。如果描述基于图像,则使用算法提取图像的文本描述可能会有所帮助。由于完成只有一个句子长,我们可以.在推理过程中用作停止序列。

模型(Models)

[title]模型(Models)[heading2]GPT-3.5GPT-3.5模型可以理解和生成自然语言或代码。我们在GPT-3.5系列中功能最强大、最具成本效益的型号是gpt-3.5-turbo,它已针对聊天进行了优化,但也适用于传统的补全(Completion)任务。|MODEL|描述|最大Token数|训练数据|<br>|-|-|-|-|<br>|gpt-3.5-turbo|功能最强大的GPT-3.5型号,针对聊天进行了优化,成本仅为text-davinci-003的1/10。将使用我们最新的模型迭代进行更新。|4096 Token|截至2021年9月|<br>|gpt-3.5-turbo-0301|gpt-3.5-turbo 2023年3月1日的快照。与gpt-3.5-turbo不同,此模型不会更新,并且仅在2023年6月1日结束的三个月内提供支持。|4096 Token|截至2021年9月|<br>|text-davinci-003|可以以比curie、babbage、ada模型更好的质量、更长的输出和一致的指令遵循来完成任何语言任务。还支持在文本中[插入](https://platform.openai.com/docs/guides/completion/inserting-text)补全。|4097 Token|截至2021年6月|<br>|text-davinci-002|与text-davinci-003类似的功能,但使用监督微调而不是强化学习进行训练|4097 Token|截至2021年6月|<br>|code-davinci-002|针对代码完成任务进行了优化|8001 Token|截至2021年6月|我们建议使用gpt-3.5-turbo而不是其他GPT-3.5模型,因为它的成本更低。:::tip注意OpenAI模型是不确定的,这意味着相同的输入可以产生不同的输出。将温度(Temperature)设置为0将使输出大部分具有确定性,但可能会保留少量可变性。:::

其他人在问
热点的大模型微调蒸馏工具有哪些
以下是一些热点的大模型微调蒸馏工具: FLUX.1:包括 FLUX.1(可商用,为本地开发和个人使用定制,生成速度快,内存占用小,在 Apache 2.0 许可下公开提供,支持在 Replicate、fal.ai 和 Comfy UI 等平台使用,且支持用户根据自己数据集微调)。其训练参数高达 120 亿,在图像质量、提示词跟随等多方面超越流行模型,工作原理基于混合架构,结合变换器和扩散技术。 基于阿里云 PAI 平台:可复现 R1 蒸馏及蒸馏训练模型过程。部署 32b 的蒸馏模型展示效果,包括模型部署(如选中模型卡片后的操作、选择 vLLM 部署、涉及竞价系统等)、蒸馏数据获取(在本地 python 环境或 notebook gallery 建立实例执行代码获取蒸馏数据集)等。 DeepSeek:PaaS 平台支持多机分布式部署,满足推理性能要求,能一站式完成模型蒸馏。可登录 Pad 控制台通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价部署,部署后可在模型在线服务 EAS 查看状态。还介绍了模型 API 调用、服务关停、蒸馏概念、应用场景及部署实操等。
2025-04-13
deepseek v3微调
以下是关于 Deepseek V3 微调的相关信息: 云舒文章总结卡 2.0 提示词全面支持 Deepseek V3,效果媲美 Claude3.7。V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号。提示词复制链接:。横版为 1080 x 800 卡片提示词,竖版为 750 x 不限高卡片提示词。 各平台均需下载 html 文件,打开后才能查看真实效果,平台自带预览因兼容性问题无法正常展示效果。Claude 使用平台包括 Claude3.7 官网、API、Cursor,使用时需要下载为 HTML 文件打开查看效果。Deepseek 使用平台包括 Deepseek 官网、API(V3 需要为 0324 更新的版本),Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 关于智能纪要,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面。 北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调,DeepSeekV3 降至原价的 50%。
2025-04-12
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10
如何做 deepseek 微调
要进行 DeepSeek 微调,以下是一些相关的知识和步骤: 1. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 2. 本地部署介绍:如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 3. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 5. 对于微调的全过程,建议阅读 Unsloth 笔记本和 HuggingFace 的《如何微调开放式 LLMs》,也可以使用《如何在一小时内阅读论文》作为指南。 6. 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-04-08
怎么本地部署ai模型,并进行微调
以下是本地部署 AI 模型并进行微调的主要步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,关于本地部署还有以下相关内容: 如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 PaaS 平台支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 总的来说,部署和训练自己的 AI 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-27
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
我想找一个好用的ai绘画,有什么推荐吗
以下是为您推荐的一些好用的 AI 绘画平台: 1. Midjourney:综合体验较好,尤其是其 v6 版本。 2. 可灵 AI:成熟的综合类工具。 3. 即梦 AI:成熟的综合类工具。 4. Krea:集成平台。 5. MewXAI:操作简单,功能丰富,包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/
2025-04-15
推荐一些 AI 工具
以下是为您推荐的一些 AI 工具: 辅助编程的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 5. Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 7. Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可根据需求选择。 内容仿写的 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写等功能,并智能分析文章属性。 2. 笔灵 AI 写作:https://ibiling.cn/ ,是得力的智能写作助手,支持多种写作类型的一键改写/续写/扩写等。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的创作助手,提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。内容由 AI 大模型生成,请仔细甄别。 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,可通过 AI 自动生成思维导图,支持多种模式。 2. ProcessOn:国内思维导图+AIGC 的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,可输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 这些 AI 思维导图工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。内容由 AI 大模型生成,请仔细甄别。
2025-04-14
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
图生图网站排名推荐
以下是为您推荐的图生图网站排名: 1. 文生图: Imagen 3:真实感满分,指令遵从强。 Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 快手可图:影视场景能用,风格化较差。 Flux.1.1:真实感强,需要搭配 Lora 使用。 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 Luma:影视感强,但风格单一,糊。 美图奇想 5.0:AI 油腻感重。 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 SD 3.5 Large:崩。 2. 图生视频: pd 2.0 pro:即梦生成的画面有点颗粒感,p2.0 模型还是很能打的,很适合做一些二次元动漫特效,理解能力更强,更适合连续运镜。 luma 1.6:画面质量挺好,但是太贵了。 可灵 1.6 高品质:YYDS! 海螺01live:文生视频比图生视频更有创意,图生也还可以,但是有时候大幅度动作下手部会出现模糊的情况,整体素质不错,就是太贵了。 runway:我的快乐老家,画面质量不算差,适合做一些超现实主义的特效、经特殊就容镜头的。 智谱 2.0:做的一些画面特效挺出圈的,适合整过,但是整体镜头素质还差点,好处就是便宜,量大,管饱,还能给视频加音效。 vidu1.5:二维平面动画的快乐老家,适合做特效类镜头,单镜头也很惊艳,大范围运镜首尾帧 yyds!就是太贵了!!!!! seaweed 2.0 pro:s2.0 适合动态相对小的,更适合环绕旋转运镜动作小的。 pixverse v3 高品质:pincerse 的首尾帧还是非常能打的,就是画面美学风格还有待提升的空间。 sora:不好用,文生视频挺强的,但是最需要的图生视频抽象镜头太多,半成品都算不上,避雷避雷避雷,浪费时间。 3. 小白也能使用的国内外 AI 生图网站: 可灵可图 1.5:https://app.klingai.com/cn/texttoimage/new 通义万相(每日有免费额度):https://tongyi.aliyun.com/wanxiang/creation 文心一言:https://yiyan.baidu.com/ 星流(每日有免费额度):https://www.xingliu.art/ Libiblib(每日有免费额度但等待较久):https://www.liblib.art/
2025-04-13
现在比较好用的AI硬件工具推荐一下,比如鼠标,眼镜,耳机啥的
以下是为您推荐的一些 AI 硬件工具: 1. 对于将 Raspberry Pi 连接到其他设备的配件,您可以参考: 防止过热的散热器 MicroUSB 转 USB 适配器,用于 Logitech 键盘的无线传感器 用于显示器的 MiniHDMI 转 HDMI 适配器 键盘和鼠标:推荐 2. 在可穿戴方面,以 GenAI 硬件为例,Meta 雷朋眼镜是具有代表性的产品。您还可以查看 GenAI 硬件榜单获取更多信息,比如: ,该榜单包含多个分类,数据来源包括 google、tiktok、twitter、亚马逊等。
2025-04-13