直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

Florence节点和模型下载方法

回答

Florence 节点和模型的下载方法如下:

  • 节点下载:
    • 方法一:从节点管理器中安装(注意结尾是 -V-2.6-int4 的那个)。
    • 方法二:在秋叶包中安装(注意结尾是 -V-2.6-int4 的那个)。
    • 方法三:直接下载下面文件解压,复制 ComfyUI_MiniCPM-V-2_6-int4 文件夹到您的“\ComfyUI\custom_nodes”目录下。注意 ComfyUI_MiniCPM-V-2_6-int4 文件夹里面直接就是多个文件不能再包文件夹了。
      • 夸克网盘:链接:https://pan.quark.cn/s/bc35e6c7e8a6
      • 百度网盘:链接:https://pan.baidu.com/s/1sq9e2dcZsLGMDNNpmuYp6Q?pwd=jdei 提取码:jdei
  • 模型下载:
    • 模型下载地址(解压后大小 5.55G,压缩包大小 4.85G):
      • 夸克网盘:链接:https://pan.quark.cn/s/98c953d1ec8b
      • 百度网盘:链接:https://pan.baidu.com/s/1y4wYyLn511al4LDEkIGEsA?pwd=bred 提取码:bred

此外,Joy_caption 相关模型下载:

  • 从 https://huggingface.co/unsloth/Meta-Llama-3.1-8B-bnb-4bit 下载并放到 Models/LLM/Meta-Llama-3.1-8B-bnb-4bit 文件夹内。
  • 必须手动下载: https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha/tree/main/wpkklhc6 ,存放文件夹:models/Joy_caption 。
  • MiniCPMv2_6 - 提示生成器 + CogFlorence:
    • https://huggingface.co/pzc163/MiniCPMv2_6-prompt-generator
    • https://huggingface.co/thwri/CogFlorence-2.2-Large

TheMisto.ai 的 MistoLine 版相关:

  • 节点:
    • MistoControlNet-Flux-dev ,在您的 \ComfyUI\custom_nodes 文件夹里面右键终端命令行,复制相关代码即可下载,或者通过以下网盘下载:
      • 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6
      • 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc
  • 模型:
    • 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21
    • 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq
  • 处理:将模型放到您的 ComfyUI\models\TheMisto_model 文件夹中,并导入官方工作流 example_workflow.json
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

郑敏轩 :Flux与MiniCPM、Joy Caption的强强联合

[title]郑敏轩:Flux与MiniCPM、Joy Caption的强强联合[heading2]MiniCPM-V1.话不多说,我们上节点:MiniCPM-V-2.6-int4方法一:最简单的可以从节点管理器中安装(注意结尾是-V-2.6-int4的那个):方法二:或在秋叶包中安装(注意结尾是-V-2.6-int4的那个):方法三:或者直接下载下面文件解压,复制ComfyUI_MiniCPM-V-2_6-int4文件夹到你的“\ComfyUI\custom_nodes”目录下。注意ComfyUI_MiniCPM-V-2_6-int4文件夹里面直接就是如下图的多个文件不能再包文件夹了。夸克网盘:链接:https://pan.quark.cn/s/bc35e6c7e8a6百度网盘:链接:https://pan.baidu.com/s/1sq9e2dcZsLGMDNNpmuYp6Q?pwd=jdei提取码:jdei1.节点安装好后,还需要模型,模型下载地址(解压后大小5.55G,压缩包大小4.85G):夸克网盘:我用夸克网盘分享了MiniCPM-V-2_6-int4.rar链接:https://pan.quark.cn/s/98c953d1ec8b百度网盘:通过百度网盘分享的文件:MiniCPM-V-2_6-int4.rar链接:https://pan.baidu.com/s/1y4wYyLn511al4LDEkIGEsA?pwd=bred提取码:bred

19、自动打标joy_caption 副本

D:\ComfyUI\ComfyUI_windows_portable\ComfyUI\custom_nodes[heading1]四、安装步骤[content]1、(Comfyui evn python.exe)python -m pip install -rrequirements.txt或点击install_req.bat注意:transformers版本不能太低(注:transformers版本不能太低)2、下载模型或者运行comfyui自动下载模型到合适文件夹(Download the model or run Comfyui to automatically download the model to the appropriate folder)下载模型或者运行comfyui自动下载模型到合适的文件夹(下载模型或者运行Comfyui自动下载模型到合适的文件夹)3、模型安装(Install model)1).Joy_caption.运行自动下载模型(推荐手动下载)Run automatic download model(manual download recommended)从https://huggingface.co/unsloth/Meta-Llama-3.1-8B-bnb-4bit下载并放到Models/LLM/Meta-Llama-3.1-8B-bnb-4bit文件夹内网盘链接:3.必须手动下载:https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha/tree/main/wpkklhc6存放文件夹:models/Joy_caption网盘链接:2).MiniCPMv2_6-提示生成器+CogFlorence[https://huggingface.co/pzc163/MiniCPMv2_6-prompt-generator](https://huggingface.co/pzc163/MiniCPMv2_6-prompt-generator)[https://huggingface.co/thwri/CogFlorence-2.2-Large](https://huggingface.co/thwri/CogFlorence-2.2-Large)运行:flux1-dev-Q8_0.gguf报错解决办法:

郑敏轩 :Flux的controlnet系列

[title]郑敏轩:Flux的controlnet系列[heading2]TheMisto.ai的MistoLine版注意:该ControlNet与Flux1.dev的fp16/fp8以及使用Flux1.dev量化的其他模型兼容。1.需要节点(可以git clone方式下载或下面准备了压缩包)MistoControlNet-Flux-dev在你的\ComfyUI\custom_nodes文件夹里面右键终端命令行,复制下面代码即可下载或者我准备了网盘:夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc提取码:lpvc1.模型夸克网盘:链接:https://pan.quark.cn/s/5551e813db21百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq提取码:zhfq1.处理将模型放到你的ComfyUI\models\TheMisto_model文件夹中1.导入官方工作流[example_workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/B2yWbnwd4oyyDcxgOtCc9FJAn3g?allow_redirect=1)所需要的两个模型:

其他人在问
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
有哪些节点式AI对话工具
以下是一些节点式 AI 对话工具: 1. Coze 中的问答节点: 是 Coze 工作流中的重要组件,能让机器人主动收集用户信息,实现更自然的对话交互。 可收集用户具体需求和信息,引导用户选择特定功能或服务,确保获取完整必要信息。 有两种问答方式:直接回答模式,用户用自然语言自由回答,bot 提取关键信息;选项回答模式,提供预设选项供用户选择,适用于功能选择菜单、分步骤引导、服务类型分类等。 配置说明包括选择执行此节点的模型、设置输入参数、提问内容、回答类型和输出等。 2. Coze 中的图像流节点: 专门用于图像处理,可通过可视化操作添加图像处理节点构建流程生成图像。 图像流发布后可在智能体或工作流中使用。 3. Coze 中的大模型节点: 调用大语言模型,使用变量和提示词生成回复。 模型方面,基础版和专业版按需使用,专业版支持接入更多模型资源。 模型选择右下角有生成多样性设置,包括精确模式、平衡模式和创意模式。 输入包括智能体对话历史、参数名与变量值,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-28
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
论文参考文献自动生成的免费工具,请提供具体下载网址
以下是一些可以自动生成论文参考文献的免费工具及相关信息: 1. 文献管理和搜索: Zotero:结合 AI 技术,能够自动提取文献信息,有助于您管理和整理参考文献。 Semantic Scholar:这是一个由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术为您提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,能帮助您精简和优化论文内容。 需要注意的是,这些内容由 AI 大模型生成,请您仔细甄别。您可以通过以下网址获取这些工具: Zotero:https://www.zotero.org/ Semantic Scholar:https://www.semanticscholar.org/ Grammarly:https://www.grammarly.com/ Quillbot:https://quillbot.com/
2025-04-09
怎么下载deepseek
以下是关于 DeepSeek 的相关信息及下载方式: 论文下载: 下载方式:pc 端鼠标移到文章上面,会有下载链接,手机端类似。 模型下载地址:https://github.com/deepseekai/Janus 活动信息: DeepSeek+阿里云实训营全新升级上线,不用下载,教您稳定调用、开发满血版 DeepSeek 智能体,更多隐藏玩法等您解锁。2 月 20 日周四下午 2 点开始在线直播,可通过参与。 金融行业·大模型挑战赛|用大模型理解金融市场,初赛阶段(2024/12/3 2025/2/10),详情: 。 全新 AI 整活第六期|DeepSeek 小说家,投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说。投稿地址:通往 AGI 之路 腾讯频道 【deepseek 专区】点击投稿,2 月 16 日晚 8 点截止并现场直播评选。活动详情: 。
2025-03-30
AI写的论文怎么下载
如果您想下载 AI 写的论文,以下是一些途径和方法: 1. 对于计算机领域(尤其是人工智能话题)的论文,您可以访问 https://www.aminer.cn/ ,可订阅自己感兴趣的话题。该网站提供免费的 AI 理解论文服务(每篇论文只要处理一次便全站可看,成本很低)以及基础的 chat with paper 功能,多数论文都有免费的 PDF 下载链接。 2. 关于一些特定的 AI 相关部署和操作,如将 AI 接入微信的部署: 点击菜单中的“终端”,然后开始粘贴代码。 注意复制代码时要复制全,每次只需要粘贴一行,然后点击一次回车。 回车后,只有最左边显示中括号对话前缀时,不要操作。 如果遇到卡点,进行不下去,可能是因为服务器网络问题,去拉取的时候下载不全,可以复制网址,手动去下载到电脑上。然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。 3. 对于 Trae AI 的安装: 由于 Trae AI 官网部署在海外,以及 Trae 本身需要使用海外的大模型,所以后续请大家通过 VPN 等方式正常科学上网。 在官网直接点击下载即可。下载完之后,将左侧的 Trae 应用拖动到右侧的文件夹内(黄叔的是 Mac,以 Mac 为例,Windows 是双击 Trae 图标)就安装完成了。 安装完成后,点击图标就可以启动,有几个简单的设置,包括主题背景和默认的语言选项,咱们可以选择中文。对于一些不理解的设置,可以直接点“Skip”选项。
2025-03-30
在哪里可以下载pika
Pika 是一个 AI 视频平台,您可以通过以下方式获取和使用: 1. 下载地址:您可以在 pika.art 进行下载和使用。 2. 功能特点: 使任何人都能将创意愿景变为现实。 具有先进的视频基础模型和轻松易用的创作产品,正在重新定义视频制作和编辑方式。 更新的 Pikaffects 具有多款变身特效,如变名画、变公主、变成婴儿时期等。用户上传照片,选择效果,即可完成变身视频。 对于奇幻感比较强的画面把控较好,会比较自然,但真实环境的画面比较容易糊,还有嘴型同步功能,对二次元友好。
2025-03-22
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14