直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何学会ollma dify

回答

以下是关于学习 Ollama 的详细步骤:

  1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。
  2. 安装 Ollama :
    • 官方下载地址:https://ollama.com/download 。
    • 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。
  3. 启动 Ollama :
    • 从 ollama 的 github 仓库找到对应版本并下载。
    • 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。
    • 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。
  4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
  5. 使用 Ollama 运行本地大模型:
    • 安装完成 ollama 后,在命令行中运行相应命令。
    • 可通过model library查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

打开Comfyui界面后,右键点击界面,即可找到Comfyui LLM party的目录,你既可以如下图一样,学习如何手动连接这些节点,从而实现一个最简单的AI女友工作流,也可以直接将[工具调用对比实验](https://github.com/heshengtao/comfyui_LLM_party/blob/main/workflow/%E6%8F%90%E7%A4%BA%E8%AF%8D%E5%B7%A5%E7%A8%8B%E8%8E%B7%E5%BE%97%E5%B7%A5%E5%85%B7%E8%B0%83%E7%94%A8%E5%AF%B9%E6%AF%94%E5%AE%9E%E9%AA%8C.json)工作流文件拖拽到Comfyui界面中一键复刻我的提示词工程实验。[heading2]4、启动ollama[content]从ollama的github仓库找到对应版本并下载:启动ollama后,在cmd中输入ollama run gemma2将自动下载gemma2模型到本地并启动。将ollama的默认base URL=http://127.0.0.1:11434/v1/以及api_key=ollama填入LLM加载器节点即可调用ollama中的模型进行实验。[heading2]5、常见报错及解决方案[content]1.如果ollama连接不上,很可能是代理服务器的问题,请将你的127.0.0.1:11434添加到不使用代理服务器的列表中。

手把手教你本地部署大模型以及搭建个人知识库

Ollama是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。Ollama作为一个轻量级、可扩展的框架,提供了一个简单的API来创建、运行和管理模型,以及一个预构建模型库,进一步降低了使用门槛。它不仅适用于自然语言处理研究和产品开发,还被设计为适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户总的来说,Ollama是一个高效、功能齐全的大模型服务工具,通过简单的安装指令和一条命令即可在本地运行大模型,极大地推动了大型语言模型的发展和应用[heading2]安装Ollama[content]官方下载地址:https://ollama.com/download当安ollama之后,我们可以通过访问如下链接来判断ollama是否安装成功[heading2]使用Ollama运行本地大模型[content]当安装完成ollama之后,我们就可以在命令行中运行如下命令既可以其中[model name]就是你想运行的本地大模型的名称,如果你不知道应该选择哪个模型,可以通过[model library](https://ollama.com/library)进行查看。这里我们选择llama2大模型:[llama2](https://ollama.com/library/llama2)考虑到我机器的配置以及不同版本的内存要求,我这里选择7b参数的模型当我们运行大模型的时候,ollama会自动帮我们下载大模型到我们本地。

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

我们需要进行部署的有三大部分1、本地部署大语言模型2、本地部署FastGPT+OneAPI3、本地部署HOOK项目或COW[heading1]一、部署大语言模型[content]一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

其他人在问
什么是Dify
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 拥有全面的 RAG Pipeline 用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。无论是创业团队构建 MVP、企业集成 LLM 增强现有应用能力,还是技术爱好者探索 LLM 潜力,Dify 都提供相应支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2025-04-13
哪里可以搜到dify的相关学习资料
以下是一些可以搜到 Dify 相关学习资料的途径: 1. 您可以通过以下链接获取相关学习资料:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令通常在宝塔面板的终端安装,若想了解命令的含义,可直接询问 AI 。 2. 微信文章: ,该文章介绍了如何在几分钟内使用 Dify 平台快速定制网站的 AI 智能客服,即使是非技术人员也能操作。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-10
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
dify
Dify 是一个开源的大模型应用开发平台: 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据实际需求选择,如追求高准确度可选高质量模式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新增加新内容。 平台特点: 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,提供功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-04-01
dify教程
以下是关于 Dify 的教程: Differential Diffusion 教程: 技术适用场景:特别适用于需要保持图像整体一致性和自然感的场景。 软填充技术:用于平滑填补图像空白或损坏部分,同时细微调整周围区域,确保新填充内容与原始图像无缝融合。 强度扇:一种可视化不同编辑强度效果的工具,帮助用户通过可视化方式理解不同编辑强度的效果。 无需训练或微调:操作仅在推理阶段进行,不需要对模型进行额外训练或微调。 与现有扩散模型兼容:可集成到任何现有的扩散模型中,增强编辑和生成能力,适用于 Stable Diffusion XL、Kandinsky 和 DeepFloyd IF 等不同的扩散模型。 主要功能特点: 精细的编辑控制:通过引入变化地图,可对图像每个像素或区域指定不同变化程度,支持离散和连续编辑。 文本驱动的图像修改:通过文本提示指导图像修改方向。 软填充技术:在填补图像空白或修复部分时,能细微调整周围区域确保无缝融合。 Dify 接入企业微信教程: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-03-29
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 推荐使用方式:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-03-28
如何才能学会写高质量的提示词
以下是关于如何学会写高质量提示词的相关内容: 1. 提示词的基本概念: 提示词用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 启用提示词优化后,可帮您扩展提示词,更生动地描述画面内容。 2. 写好提示词的方法: 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 利用辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词可清空提示词框,会员加速能加速图像生图速度,提升效率。 小白用户可以点击提示词上方官方预设词组进行生图。 3. 优化和润色提示词的方法: 明确具体的描述,使用更具体、细节的词语和短语,避免过于笼统。 添加视觉参考,在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 注意语气和情感,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 优化关键词组合,尝试不同的关键词搭配和语序。 增加约束条件,如分辨率、比例等,避免 AI 产生意料之外的输出。 分步骤构建 Prompt,将复杂需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 参考优秀案例,研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴写作技巧和模式。 反复试验、迭代优化,通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。同时,要了解大模型的特性,具备清晰表述自己需求和任务的能力,才能用好这个工具。
2025-03-15
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10
我想学会使用ai,该学习哪些方面的知识
如果您想学会使用 AI ,以下是一些您需要学习的方面: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 学习路径偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 学习路径偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-27
我不会英语可以学会用AI吗?
不会英语也是可以学会使用 AI 的。以下是一些方法和建议: 英语学习方面: 利用智能辅助工具,如 Grammarly 进行英语写作和语法纠错,改进英语表达和写作能力。 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 使用自适应学习平台,如 Duolingo,其利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 与智能对话机器人,如 ChatGPT 进行英语会话练习和对话模拟,提高交流能力和语感。 学习方法建议: 设定明确的学习目标和时间表,分阶段完成学习任务。 结合听、说、读、写多种方式进行多样化练习,全面提升语言技能。 尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 利用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 此外,您还可以参考以下智能体: 能打动人的文案,有且只有四种——扣子“李教授文案馆”智能体:https://www.coze.cn/store/agent/7446618458671923239?bid=6esaj6f1c2g0r&bot_id=true 同一句话能有多少种输出方式——扣子“多风格翻译”智能体:https://www.coze.cn/store/agent/7445127123201065011?bot_id=true 您的 24 小时英语私教和陪练——豆包“英语学习助手”智能体:https://doubao.com/bot/QZD7WXts
2025-01-07
学ai前要先学会英语吗?
学习 AI 之前是否要先学会英语,因人而异。 对于一些人来说,英语基础较差并不影响他们开始接触和使用 AI 工具。例如,有文科生在不懂代码、英语也差的情况下,依然能够注册尝试各种 AI 工具,并在学习后取得一定成果。 然而,在学习 AI 的过程中,英语可能会起到一定的辅助作用。比如,了解英文世界里的 AI 发展动态,能够获取更多前沿信息。同时,像在口语练习方面,利用相关的 AI 工具可能有助于提升英语能力,从而更好地理解和应用 AI 技术。 总之,英语不是学习 AI 的绝对前提条件,但具备一定的英语能力可能会为学习 AI 带来更多便利和优势。
2025-01-06
你好我如何学会运用ai
以下是关于如何学会运用 AI 的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入钻研,同时一定要掌握提示词的技巧,它容易上手且非常有用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品做出自己的作品,知识库中也提供了很多大家实践后的作品和文章分享。 五、体验 AI 产品 与现有的 AI 产品互动是学习 AI 的有效方式。例如,尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,从而获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,关于如何用 AI 进行英语学习和数学学习: 英语学习 1. 利用智能辅助工具(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 借助自适应学习平台(如 Duolingo),利用 AI 技术量身定制学习计划,提供个性化学习内容和练习。 4. 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习 1. 使用自适应学习系统(如 Khan Academy),结合 AI 技术获取个性化的数学学习路径和练习题。 2. 利用智能题库和作业辅助工具(如 Photomath),通过图像识别和数学推理技术获取数学问题的解答和解题步骤。 3. 借助虚拟教学助手(如 Socratic),利用 AI 技术解答数学问题、获取教学视频和答疑服务。 4. 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 关于如何用 AI 学习一门外语: 1. 设定明确的学习目标和时间表,分阶段完成学习任务。 2. 结合听、说、读、写多种方式进行多样化练习,全面提升语言技能。 3. 尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 利用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-18