直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何在Mac上运行comfyUI

回答

在 Mac 上运行 ComfyUI 的步骤如下:

  1. 电脑配置:MacBook Pro,M1 芯片,16G 内存,Sonoma 14.6.1 系统版本。
  2. 部署 ComfyUI:
    • 安装依赖:在终端中输入“pip3 install -r requirements.txt”安装 ComfyUI 的依赖文件。终端提示需要特定版本的 numpy 时,输入“Y”卸载当前版本,然后输入“pip3 install numpy==1.26.4”安装指定版本。
    • 启动 ComfyUI:在终端中输入“pwd”查看 ComfyUI 的文件路径,复制文件路径,替换启动命令中的相应部分,然后将命令“source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py --auto-launch --listen --dont-upcast-attention --output-directory ~/Desktop”复制到终端。启动成功后,浏览器会自动跳转,但网页地址可能不对,直接在浏览器打开“http://localhost:8188/”即可使用。
  3. 管理器和资源占用插件:官方的 ComfyUI 安装包不带管理器和资源占用视图,需要从 GitHub 下载。管理器插件下载地址:https://github.com/ltdrdata/ComfyUI-Manager 。资源占用视图插件装不装均可,下载地址:https://github.com/crystian/ComfyUI-Crystools 。

此外,还有一种搭建自己第一个 ComfyUI 的方法(熟手推荐 - 自定义创建):

  1. 创建工作空间:进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建。镜像选择 lanrui-comfyui 镜像;网盘默认挂载;数据集默认挂载 sd-base;启动方式默认选择手动启动。待实例状态由启动中变为运行中后,稍等一会,点击进入 JupyterLab,选择 terminal 终端。
  2. 启动 ComfyUI:进入终端后,先参考这里配置学术加速。运行如下启动命令后按回车键,等待 1 分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用 nonhup 启动:启动命令“nohup bash /home/user/start.sh > comfy.log 2>&1 &”;查看启动/出图进度命令“tail -fn 500 comfy.log”;停止命令“pkill -9 -f '27777'”。当页面显示“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。
  3. 访问 ComfyUI 界面:返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用 ComfyUI 啦。

需要注意的是,在 Mac 上使用 ComfyUI 存在一些难点:

  1. 生图慢,因为 Mac M 只有 CPU,没有 GPU。
  2. 生图的大模型在 CPU 环境中不一定适配、好用。
  3. 用 Mac 生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。
  4. 大神们在 Windows 系统里做的一键包,在 Mac 中不能用。
  5. 大神们的工作流也要做适配 Mac 的修改,需要一点点代码阅读和修改的能力。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

维纳 Vina: MacBook Pro M1 跑通二狗子的黑神话工作流-ComfyUI 新手从0到1系列

MacBook Pro,M1芯片,16G内存,Sonoma 14.6.1系统版本。[heading2]缘起[content]我是一名AI生图零基础、代码零基础的产品经理,从8.13号开始跟着WaytoAGI社区的ComfyUI共学课学习,刚开始用云平台的应用,对新手来说非常友好,节点、模型都是内置的,打开就能上手。跟着共学课程,我在云平台学习了ComfyUI的基础用法。8.19号,AJ在共学群里发了[二狗子的黑神话悟空工作流](https://openart.ai/workflows/monkey_favorable_41/-ai/YIP0875LOCw3t5K78lkr),特别帅,我很想把这个模型跑起来。我在云平台尝试跑这个工作流,要么是环境不匹配,要么是模型太大上传到云很慢,于是我下决心要在本地部署一套ComfyUI,在本地跑起来。[heading2]Mac用ComfyUI的难点[content]我刚开始不明白,为什么AI生图领域喂饭的大神没有用Mac的,我后来在操作的过程中发现,在Mac部署确实有很多不方便的地方:1.生图慢,因为Mac M只有CPU,没有GPU。这可能是大神们不喜欢用Mac生图的最大原因。2.生图的大模型在CPU环境中不一定适配、好用。3.用Mac生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。4.大神们在windows系统里做的一键包,在Mac中不能用。5.大神们的工作流也要做适配Mac的修改,需要一点点代码阅读和修改的能力。

维纳 Vina: MacBook Pro M1 跑通二狗子的黑神话工作流-ComfyUI 新手从0到1系列

在终端中输入pip3 install -r requirements.txt用来安装ComfyUI的依赖文件。终端提示,需要特定版本的numpy,终端询问是否卸载当前版本numpy,输入Y卸载,然后输入pip3 install numpy==1.26.4安装此版本的numpy。[heading2]启动ComfyUI[content]在终端中输入pwd,查看ComfyUI的文件路径,复制文件路径,替换启动命令中的背景色部分,然后将命令复制到终端,即可启动ComfyUI。启动ComfyUI的命令source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py --auto-launch --listen --dont-upcast-attention --output-directory ~/Desktop启动成功后,浏览器会自动跳转到一个本地网页,但这个网页地址是不对的,直接在浏览器打开http://localhost:8188/这个地址,就可以使用ComfyUI了。[heading2]管理器和资源占用插件[content]官方的ComfyUI安装包是不带管理器和资源占用视图的,需要另外再从GitHub下载。推荐安装管理器插件,[下载](https://github.com/ltdrdata/ComfyUI-Manager)地址。资源占用视图的插件装不装我觉得都可以,在终端中也可以看到进度,不过资源管理插件看到的更详细,[下载](https://github.com/crystian/ComfyUI-Crystools)地址。

ComfyUI基础教程—小谈

进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建(如图所示):镜像:选择lanrui-comfyui镜像;网盘:默认挂载;数据集:默认挂载sd-base;启动方式:默认选择手动启动;待实例状态由启动中变为运行中后,稍等一会,点击进入JupyterLab,选择terminal终端;[heading5]2、启动ComfyUI[content]进入终端后,请参考[这里](https://doc-rde.lanrui-ai.com/docs/yong-hu-shou-ce/gao-ji-she-zhi/xue-shu-wang-zhan-jia-su/)先配置学术加速运行如下启动命令后按回车键,等待1分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用nonhup启动:启动命令nohup bash /home/user/start.sh > comfy.log 2>&1 &查看启动/出图进度命令tail -fn 500 comfy.log停止命令pkill -9 -f '27777'当页面显示(如下图所示)“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。[heading5]3、访问ComfyUI界面[content]返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用ComfyUI啦。

其他人在问
MacBook 如何做一个 RPA 机器人
以下是在 MacBook 上制作 RPA 机器人的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-04-11
支持Mac的AI助手,能支持自定义大模型和智能体
以下是为您提供的支持 Mac 且能支持自定义大模型和智能体的 AI 助手相关信息: 在网站上增加一个 AI 助手: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 1. Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 2. 它提供了模型库,用户可从中下载不同模型,也支持自定义模型,例如修改模型的温度参数或设置特定系统消息,还提供了 REST API 用于运行和管理模型以及与其他应用程序的集成选项。 3. Ollama 社区贡献丰富,有多种集成插件和界面。安装时访问 https://ollama.com/download/ ,安装完后在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认。 智能体应用的相关介绍: 大模型存在无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等局限性,为提升用户体验和增强业务竞争力,越来越多的企业构建 AI 助手。智能体应用基于大模型,通过集成特定的外部能力弥补不足,适用于有企业官网等渠道期望提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-03-23
配置“DeepSeek-R1”模型的 API key:基础 URL:https://ark.cn-beijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeek-R1”模型。这个行为在Macbook中怎么操作,请进行指导,通过图片、文字、数据、网址等形式
在 Macbook 中配置“DeepSeekR1”模型的 API key 及添加模型的操作步骤如下: 1. 获取 DeepSeekR1 满血版密钥: 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ 。 创建一个接入点,点击在线推理创建推理接入点。 为接入点命名为 DeepSeekR1。若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 确认无误后,点击“确认接入”按钮。 自动返回创建页面,复制多出的接入点名称“DeepSeekR1”。 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】,若没有则点击【创建 API key】,复制并保存。 2. 配置“DeepSeekR1”模型的 API key: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 3. 环境配置指南: 首先到 deepseek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。若没有赠送余额,可选择充值,支持美元和人民币两种结算方式及各种个性化充值方式,并创建一个 API key(注意及时保存,只会出现一次)。 以 cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline 。安装完后,打开三角箭头,选中 RooCline 并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek 。 API Key:填入已创建的 key 。 模型:选择 DeepSeekreasoner 。 语言偏好设置。 记得把 HighRisk 选项都打开,最后点击 Done 保存修改。 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-26
Deepseek网页端使用,总是出现服务器繁忙,请稍后再试,怎么办?请注意,我所使用的是Macbook
如果您在使用 DeepSeek 网页端时总是出现“服务器繁忙,请稍后再试”的提示(使用的是 Macbook),可以尝试以下方法: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。然后打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 2. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeekR1”模型。 3. 如果上述方法不行,还可以尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1
2025-02-26
如何在MacBook上部署AI工具
在 MacBook 上部署 AI 工具的方法如下: 方法一:接入微信 1. 打开菜单中的“终端”。 2. 按照以下步骤依次粘贴代码并回车: 第一步:cd/root||exit 1 第二步:粘贴下方两行代码,等待下载完成。若有卡点,可能是服务器网络问题,可手动下载文件并上传至 root 文件夹。 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:依次粘贴并回车:echo'source /root/anaconda/bin/activate AI'>>~/.bashrc 3. 执行完成后,刷新重新进入终端,若最左侧出现“(AI)”字符,则部署成功。 方法二:安装 Trae 1. 科学上网,因为 Trae AI 官网部署在海外,且需要使用海外的大模型。 2. 在官网直接点击下载,Trae 会自动识别电脑芯片。 3. 对于 Mac,将下载完后的左侧 Trae 应用拖动到右侧文件夹内;对于 Windows,双击 Trae 图标完成安装。 4. 安装完成后,点击图标启动,进行简单设置,如选择主题背景和默认语言为中文,根据情况选择“Skip”选项等。 5. 选择合适的登录方式,如 Google 账号或 Github 账号(推荐注册 Github 账号:https://github.com/ )。 方法三:选择合适的平台 目前市面上有线上和线下本地部署的两种 AI: 线上的优势为出图速度快,不吃本地显卡配置,无需下载大模型,能看其他创作者的作品,但出图分辨率有限。 线下部署的优势为可添加插件,不卡算力,出图质量高,但使用时电脑基本宕机,配置不高可能出问题。 可充分发挥线上和线下平台的优势,线上用于找参考、测试模型,线下作为主要出图工具。例如,在线上绘图网站的绘图广场上发现想要的画风,点击创作获取模型和标签,截取游戏人物底图,多次尝试不同画风得出合适的模型和组合,最后在 C 站(https://civitai.com/ )下载对应模型到本地加载部署后开始生图。
2025-02-25
MacBook 如何搭建机器人进行日常事务操作
以下是在 MacBook 上搭建机器人进行日常事务操作的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 1. 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 2. 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 3. 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 4. 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 5. 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 6. 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 7. 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 8. 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-02-25
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
我自己想做一个英语背单词的游戏,让AI写出Markdown代码运行后,发现问题很大,但是我有不知如何修改这些代码。所以我觉得自己应该懂Markdown 代码语言。但是我不知道Markdown是最适合的编程语言吗?
Markdown 语言不太适合用于编写复杂的英语背单词游戏。虽然 Markdown 简单易用,常用于文档格式化,但在实现游戏逻辑和功能方面存在较大局限性。 如果您想开发英语背单词游戏,更适合使用编程语言,如 Python 等。在处理代码问题时,您可以参考以下方法: 1. 对于编程小白,向 AI 提供代码范例,尤其是新进入代码节点的 IDE 中的范例,减少对 AI 所写代码的改动。 2. 向 AI 说清楚输入变量与输出变量的类型。 3. 说明与工作流中匹配或想要的变量名称,以减少二次修改。 4. 列出输入变量的具体书写形式,对于复杂形式可使用特定方法获取。 5. 说清楚代码要实现的功能,复杂功能尽量将运行逻辑描述清楚,多用变量名称指代涉及的变量。 如果代码运行效果不尽人意,可把当前的代码、输入变量、预期结果提供给 AI,并告知错误的结果或者报错信息,让 AI 帮忙寻找问题并提供修改方案。提问时可参考以下方式: 以上是我目前的 python 代码,我的输入变量。 但是代码运行后的实际结果却是。 另外,在游戏开发与修改过程中,还需注意文件的存放要求、功能优化、平台上传等方面的问题。例如,三个重要文件需在一个文件夹,本地内置图像、音乐等也需在同一文件夹。游戏功能可增加关卡、调整金币获取和技能点花费、解决 Bug 等。研究将游戏发布到 4399 开放平台时,需注册、实名制,审核较严格。获取游戏素材可从官网免费下载或淘宝购买抠好的素材。
2025-03-18
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
很抱歉,您提供的内容中没有关于家庭用私人部署 deepseek 电脑配置的相关信息。如果您需要配置一台价格在 5 万以下、能流畅运行的家庭用电脑,以下是一些建议: CPU:可以选择英特尔酷睿 i9 或 AMD 锐龙 9 系列的高端处理器。 显卡:选择 NVIDIA GeForce RTX 40 系列的高端显卡,如 RTX 4080 或 RTX 4070Ti。 内存:32GB 或 64GB 的 DDR5 内存。 存储:1TB 或 2TB 的 NVMe SSD 作为系统盘,再加上大容量的机械硬盘用于数据存储。 主板:选择与所选 CPU 兼容的高端主板,以确保稳定性和扩展性。 关于模型版本,Midjourney 的 V5 模型是较新且先进的版本,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。您可以通过添加“v 5”参数或使用“/settings”命令并选择 MJ Version 5 来使用该模型。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
以下是为您推荐的家庭用私人部署 deepseek 电脑配置,价格在 5 万以下,能够较流畅运行: CPU:Intel Core i913900K 或 AMD Ryzen 9 7950X 显卡:NVIDIA GeForce RTX 4080 或 RTX 4070Ti 内存:32GB 或 64GB DDR5 高频内存 硬盘:1TB NVMe M.2 固态硬盘 + 4TB 机械硬盘 主板:支持所选 CPU 的高端主板,如 Z790 或 X670 系列 电源:850W 及以上的高品质电源 关于模型版本,Midjourney 最新的模型是 V5 版本,于 2023 年 3 月 15 日发布。使用此模型,您可以在提示词末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持如 tile 重复图案等高级功能。它在风格范围、图像质量、细节表现、对提示的响应以及图像提示性能等方面都有显著改进。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行
对于家庭用的私人部署 deepseek 电脑配置,在 5 万元以下的预算,以下是一个推荐配置: CPU:Intel Core i913900K 或 AMD Ryzen 9 7950X 主板:选择与所选 CPU 兼容的高端主板,如华硕、技嘉等品牌的 Z790 或 X670 系列 内存:32GB 或 64GB DDR5 高频内存 硬盘:1TB NVMe M.2 固态硬盘作为系统盘,再加上 4TB 以上的机械硬盘用于数据存储 显卡:NVIDIA GeForce RTX 4070Ti 或 AMD Radeon RX 7900 XTX 电源:850W 及以上的高品质电源 机箱:选择散热良好、空间宽敞的机箱 请注意,电脑配置的选择还需要考虑您的具体需求和使用场景,以上配置仅供参考。
2025-03-17
ai是啥运行原理
AI 的运行原理主要包括以下方面: 1. 模仿人类智力活动:是一种模仿人类智力活动的信息处理系统,通过训练能够还原人类思维系统,从而实现对人类智力活动的模仿。 2. 深度学习和大数据技术:通过深度学习、大数据等技术,在一定程度上能够“自主创作”。这种创作方式是对人类学习、创作和表达过程的学习,其创作过程与人类智力活动在某种意义上高度相似,反映出人类干预和控制的烙印。 3. 特定的技术架构:例如 FLUX.1 AI 的工作原理基于混合架构,结合了变换器和扩散技术,能够根据文本提示生成准确的图像。它采用尖端技术,如流匹配和优化,以生成高质量图像。 4. 基于数据学习:如 GenAI 是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。
2025-03-10
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08