以下是为您提供的一个人学习 AI 的相关指导:
一、了解 AI 基本概念 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
二、开始 AI 学习之旅 在「入门:AI 学习路径」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。
三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等方面。您可以根据自身兴趣选择特定模块深入钻研,同时一定要掌握提示词的技巧,它容易上手且很实用。
四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,在知识库中也有很多实践后的作品和文章分享,欢迎您在实践后也进行分享。
五、体验 AI 产品 与现有的 AI 产品互动是学习 AI 的有效方式,例如尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,从而获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
另外,为了在医疗保健中让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。比如,预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需经历多年相关学习和实践。
YoYo 分享了自己在通往 AGI 的学习之路心得,学习前不理解 AI 和提示词工程,走了不少弯路;学习后能创建智能体并在公司中实践智能客服等。其学习路径强调“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,并认为学以致用,通过学习、分享不断成长。
了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。
毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。
千人千面,仅代表个人的学习实践,仅供参考启发。[heading2]澄清内容,方便大家参考[heading3]学习前状态[content]不理解什么是AI,什么是提示词工程,但是不影响使用的一个蛮干的状态个人是个文科生,不懂代码,英语也非常差;在学习AGI之前的状态是,注册尝试各种AI工具,走了不少弯路对ChatGPT的认识,仅限于日常问答,SQL学习交互,能够支持工作数据提取[heading3]学习后现状[content]终于可以搓多Agent的智能体,但是需要进修python搓更多智能体营销文案demo,SQL代码进阶学习应用创建了3个图像流智能体,2个Agent智能体玩具?在公司中实践智能客服从创建到应用的过程,实现企业微信机器人问答的基本功能学习Dr.kown的尝试实践图像流的尝试企业智能体实践,智能客服[heading2]在AGI的学习路径[content]关键词:#少就是多#先有个初识#目录索引推荐#兴趣最重要#先动手学习路径,主线+支线的游戏通关~最后,个人感受真的学不完,找到适合自己的就好学以致用,通过学习-分享-不断填补知识的缝隙,成长的一种路径。[heading2]关于我[content]大家好~我是yoyo??坐标北京,铲屎官一枚?AIGC的小白,持续进阶成长,打造一个自己的智能体☕️以上期待能够给到各位一点启发感谢家属带我在“[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)”打开新世界,接触有趣的事情,结识有趣的人