直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

用AI总结长文的prompt怎么写比较好

回答

以下是关于用 AI 总结长文的一些提示词编写建议:

  1. 单人发言版:基于李继刚老师的“通知消息整理助手”修改“文字排版大师”的 Prompt,重点 Prompt 语句需标出。
  2. 多人发言版:
    • 明确跟 GPT 说明需要其帮忙总结文字内容。
    • 将提示词和文字原文发送给 GPT,等待其输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,替换掉不美观的符号。
  3. 法律相关:
    • 格式:【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】
    • 讲清楚背景和目的,例如律师处理交通事故案件时应清晰描述案件事实、法规等。
    • 学会提问,使用清晰、具体的语言,避免模糊表述,了解 AI 工作原理和限制。
    • 拆解工作流程,将复杂任务分解成更小、更具体的环节。
  4. 通用写作方面:
    • 第一部分:说清楚要解决的问题及背景,可能导致的损失。
    • 第二部分:以案例引入,写明案号、案件事实经过、裁判结果、关键依据等要点。
    • 第三部分:对案例进一步分析,写明注意关键点,不给建议。
    • 第四部分:给出具体操作建议,包括事前、事中、事后的注意事项和补救措施。
    • 第五部分:结语及作者宣传。
    • 文章结构需有结构化理解,所有结论应有案例基础,不能违反法律规定,文字简练精准,信息密度足够,建议具体细致且易于操作。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

夙愿:AI 快速总结群聊消息

如果我们直接把这段原文发送给GPT,它的回答是:因为我们没有明确跟GPT说需要它帮忙总结文字内容,GPT就无法按照我们的意图去工作所以,需要编写一套提示词让其帮我们执行总结文字内容这个工作。[heading3]单人发言版[content]这里,我基于李继刚老师的“通知消息整理助手”修改了一份“文字排版大师”的Prompt(重点Prompt语句已经标出)[heading3]多人发言版[heading2]三、GPT[content]将上面提示词和文字原文发送给GPTGPT就开始整理文字,等待其输出完毕之后,点聊天框左下角的复制按钮复制粘贴到文本编辑器中,整理一下,删掉一些无关内容,例如最后的一句的“?你好,还有其他内容需要我帮你排版吗?”此处之外,我们可以看到很多双星号,如果直接把这段文件发送到微信群里是不美观的。所以,Ctrl+F调出“查找与替换”,使用替换法替换掉双星号OK,这样就搞定了~看一下效果

潘帅:手把手分享法律人如何用好AI — Prompt篇

在提供法律建议时,我们需要用简洁明了的语言来总结核心观点和注意事项。例如,我们可以概括出5点关于案件处理的核心观点,并列出7点在案件推进中需要特别注意的事项。Separator为了确保我们的建议清晰易懂,我们可以使用引号、分隔符号以及“首先、其次、最后”等连接词来组织Prompt。这样做不仅能让建议更有条理,还能通过AI给到更优质的信息。Capacity and Role比如:你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。通过赋予AI这样的角色,我们能够更有效地利用它的数据处理和模式识别能力,从而提升律师的工作效率。3.Prompt方法总结格式=【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】4.Prompt技巧讲清楚背景和目的在向AI提问时,除了明确的问题描述,对于背景信息和提问的目的最好梳理清楚,这样可以帮助AI更好地理解问题的上下文,从而提高回答的准确性。例如,律师在处理一起交通事故案件时,可以询问:“给你一则交通事故案件事实xxx,根据xxx法规,x方的责任应如何划分?”学会提问,如何提高回答内容的准确性提出好问题是提高AI回答准确性的关键。这包括使用清晰、具体的语言,避免模糊不清的表述。同时,了解AI的工作原理和限制也很重要,这样你可以更好地设计问题,使其能够提供有用的答案。拆解环节、切分流程、具体落到某个工作细节在应用AI之前,首先要对工作流程进行细致的拆解。这意味着将复杂的任务分解成更小、更具体的环节,以便AI可以更精确地执行。

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

(2)第一部分:说清楚本文要解决的问题是什么,问题的背景是什么,这个问题可能导致哪些损失;(3)第二部分:以一个案例引入,这个案例改写自【基础材料】的【类案参考】部分,需要写清楚案号、案件事实经过、法院裁判结果、法院作出这一裁判结果的关键依据和其他与文章有关的要点;(4)第三部分:对案例进行进一步的分析,写明需要注意的关键点,分析可以改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。(5)第四部分:给出具体的操作建议,应分为:事前应注意事项;事中需要注意留存的证据;事后可以采取的补救措施,三个部分;每个部分分别给出三条清晰具体的建议。(6)第五部分:结语及对于本文作者的宣传,欢迎大家有其他问题联系咨询。文章结构是比较精华的部分,需要你自己对最终的输出成果有结构化的理解——直白点说需要你自己很会写文章,且会教别人写文章。最后再总结一下——【符】的部分是对工作【实现路径】,即完成这份工作所需资源和如何使用这些资源,以及最终输出结果的描述。大致结构:1.定义身份(边界),整体流程和所需资源描述。2.对所需资源及如何使用进行描述。3.对最终输出的结果进行描述。敕1.你的所有结论均应当有相对应的案例基础,不能违反法律规定,你不能自己编造,一旦被发现有编造的情况我就完蛋了,你也要完蛋了。2.你的文字需要简练精准,有足够的信息密度,最终给出的建议必需具体细致且易于操作。

其他人在问
cursor 长文档处理长文档
以下是关于 Cursor 长文档处理的相关信息: UI 用户界面: 当 Cursor 仅添加其他文本时,补全将显示为灰色文本。如果建议修改了现有代码,它将在当前行的右侧显示为 diff 弹出窗口。 您可以通过按 Tab 键接受建议,也可以通过按 Esc 键拒绝建议。要逐字部分接受建议,请按 Ctrl/⌘→。要拒绝建议,只需继续输入,或使用 Escape 取消/隐藏建议。 每次击键或光标移动时,Cursor 都会尝试根据您最近的更改提出建议。但是,Cursor 不会始终显示建议;有时,模型预测不会做出任何更改。 Cursor 可以从当前行上方的一行更改为当前行下方的两行。 切换: 要打开或关闭该功能,请将鼠标悬停在应用程序右下角状态栏上的“光标选项卡”图标上。 @Docs: Cursor 附带一组第三方文档,这些文档已爬取、索引并准备好用作上下文。您可以使用@Docs 符号访问它们。 如果要对尚未提供的自定义文档进行爬网和索引,可以通过@Docs>Add new doc 来实现。粘贴所需文档的 URL 后,将显示相应模式。然后 Cursor 将索引并学习文档,您将能够像任何其他文档一样将其用作上下文。 在 Cursor Settings>Features>Docs 下,您可以管理已添加的文档,包括编辑、删除或添加新文档。 @Files: 在 AI 输入框中(如 Cursor Chat 和 Cmd K),可以使用@Files 引用整个文件。如果继续在@后键入,将在策略之后看到文件搜索结果。 为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。 在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性对它们进行重新排序。
2025-04-10
长文本模型有哪些
以下是一些常见的长文本模型: 1. 聊天模型:如 GPT、Claude 3 等。 2. Base 模型:例如 Yi34 开源模型。 3. 百川 192K 的闭源模型,对于 6 万字的长文本,其推理能力和回答效果优秀。 4. 通义千问的 Qwen2.51M 大模型,推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,且开源推理框架在处理百万级别长文本输入时可实现近 7 倍的提速。 5. 文心一言 4.0、智谱清言、KimiChat 等国产大模型在长文本归纳总结能力方面也有所涉及。
2025-04-09
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31
有什么好的工具帮我给长文做摘要
以下是一些可以帮助您给长文做摘要的工具: 1. Kimi Copilot: 包括网页总结助手和阅读助手两个实用的浏览器插件,可在 Google 应用商店获取。需要在浏览器中登录 Kimi 账号并关联网页版。插件提示词分了 3 部分,能按照特定流程为长文本生成摘要。 2. OpenAI 相关方法: 对于长对话应用,可将复杂任务拆分为更简单的子任务,对前面的对话进行总结或筛选。 对于长文档,可采用分段总结并递归构建完整摘要的方式。 还可动态选择与当前查询最相关的对话的前面部分。 希望这些工具对您有所帮助。
2025-03-27
长文本文件用哪个AI处理
对于处理长文本文件,以下是一些相关的 AI 工具和方法: 1. Whisper API:默认情况下仅支持小于 25MB 的文件。若文件更长,需将其分成小于 25MB 的块或使用压缩后格式。可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。您还可以使用提示来提高 Whisper API 生成的转录质量,例如处理特定单词或缩略语的识别错误、保留分段文件的上下文、避免标点符号的省略等。 2. 通义千问的 Qwen2.51M 大模型:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速。在上下文长度为 100 万 Tokens 的大海捞针任务中表现较好。对于更复杂的长上下文理解任务,可参考相关测试集。其优势包括长文本处理能力强、推理速度提升、上下文长度扩展等。开源平台有 Huggingface(https://huggingface.co/spaces/Qwen/Qwen2.51MDemo)和 Modelscope(https://www.modelscope.cn/studios/Qwen/Qwen2.51MDemo)。
2025-03-18
长文海报AI
以下是关于长文海报 AI 的相关内容: 一、需求场景 在以下情况下我们会需要自己制作海报: 1. 当想发条朋友圈/微博/twitter 等,干巴巴的文字看起来难以获得较多点赞。 2. 百度图片的图质量差且容易撞图。 3. 相册里关于老爸和自己的照片总是充满尴尬。 二、大致流程 1. 主题与文案:确定海报主题后,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要完成的风格意向,背景不一定是空白的,可根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用无界 AI,输入关键词,生成并挑选一张满意的海报底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。 三、软件指引 1. 使用工具:无界 AI 网址:https://www.wujieai.cc/ 做图逻辑类似于 SD,其作为出图工具的优势在于: 国内网络即可稳定使用。 有免费出图点数。 支持中文关键词输入。 无需额外下载风格模型,可直接取用。 2. 使用模型:皮克斯卡通 本案例应用场景为朋友圈 po 图,因此画幅比例选择 1:1。 无界 AI 的皮克斯卡通模型位置,根据下图指引找到:二次元模型》模型主题》皮克斯卡通。 3. 关键词类别 场景:向日葵花田、面包店等。 氛围:温馨、温暖等。 人物:父亲和女儿、父亲和儿子。 造型:发型、发色、服饰、配饰(会同时影响到父亲和孩子的形象)。 情绪:笑得很开心、大笑、对视等。 道具:童话书等。 构图:半身、中景等。 画面:色彩明艳。 特殊:……
2025-03-10
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
音频总结的AI有哪些
以下是一些关于音频总结的 AI 相关内容: 在智能纪要方面,AI 音乐创作通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区。数字人语音合成介绍了声音克隆技术,常用的是 JPT service。 总结类 AI 工具方面,如 BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/)、15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/)、summarize.tech:AIpowered video summaries(https://www.summarize.tech/)。 在生成式 AI 季度数据报告中,会议总结赛道可能因远程工作和在线会议普及而需求增加,Otter AI 作为领先产品保持稳定增长。其中 2023 年 4 月到 2024 年 3 月,赛道月访问总量有变化,如 2023 年 4 月约 1314.6 万,2024 年 3 月增至 2146.3 万。同时还有相关的榜单数据,如 23 年 4 月访问量 Top10 等。
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
我现在想做一个总结我每日复盘的智能体
以下是关于创建总结每日复盘智能体的相关信息: 智普工作流功能及创建流程: 新用户资源包:新用户有 1 元及 5 元的资源包可供购买,能满足使用需求。 工作流功能:具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用多个 agent。 工作流创建:在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,对话型多用于多 agent 协作等场景,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档获取:文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 版本选择:接入微信时,有云服务器和本地电脑两种版本,可按需选择。 关于姿谱清流工作流及模型配置的讨论: 工作流节点与 agent:工作流中节点和 agent 的连接方式,agent 具有意图识别和跳出条件,可实现任务跳转,所有 agent 平级可互相跳转。 文本存储问题:姿谱清流本身无存储功能,需依靠其他笔记工具存储执行完的文本。 模型配置与调试:介绍了姿谱清流中角色扮演模型的配置方法,包括角色名称、背景、人格等设置,以及单节点调试功能和用户配置。 意图识别与冲突:意图配置冲突可能导致识别错误和乱跳,识别准确率相对较准。 多智能体的记忆:多智能体之间存在记忆,后续会讲到相关参数的使用。 在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。
2025-04-10
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31