大模型和智能体的区别主要体现在以下几个方面:
概念定义:
局限性:
开发平台:
应用场景:
在 Anthropic 的定义中,智能体可以有多种定义,一些客户将其定义为能够长期独立运行的全自动系统,能使用各种工具完成复杂任务;另一些则将其描述为更具规范性、遵循预定义工作流程的系统。Anthropic 将这些变体统称为智能系统,并在架构上区分为工作流和智能体两种类型,工作流是通过预定义代码路径来编排 LLM 和工具的系统,智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
1、什么是智能体?随着ChatGPT与AI概念的爆火,出现了很多新名词,“智能体Agent”还有bot和GPTs等,Kimi(月之暗面的大模型)的书面解释是:简单理解就是AI机器人小助手,参照移动互联网的话,类似APP应用的概念(我记得GPT刚出的时候,还有人把GPT应用称为GAP),AI大模型是一个技术,而面向用户提供服务的是产品,所以有很多公司开始关注AI应用层的产品机会。我知道的在做Agent创业的公司就有好几家:C端案例:比如社交方向,用户注册之后先捏一个自己的Agent,然后让自己的Agent和其他人的Agent聊天,两个Agent聊到一起后再真人介入,也是一个很有趣的场景;还有借Onlyfans入局打造个性化聊天的创业公司。B端案例:如果字节扣子和腾讯元器是面向普通人的低代码平台,类似APP时代的个人开发者,那还有一个机会就是帮助B端商家搭建Agent,类似APP时代专业做APP的。2、智能体开发平台我最早接触到扣子Coze,是一篇科技报道:国产GPTs商店来了。平替版GPTs商店,字节Coze扣子上线。2月1日,字节正式推出AI聊天机器人构建平台Coze的国内版“扣子”,主要用于开发下一代AI聊天机器人。后来发现国内也有很多智能体开发平台,如Dify.AI,但个人比较常用的还是扣子,所以本篇主要对比字节扣子和腾讯元器。3、为什么要关注智能体?
大模型具有强大的语言理解和生成能力,但也存在一定的局限性,例如:无法回答私有领域问题(如公司制度、人员信息等);无法及时获取最新信息(如实时天气、比赛结果等);无法准确回答专业问题(如复杂数学计算、图像生成等)。为了提升用户体验和增强业务竞争力,越来越多的企业会构建AI助手,以便全天候(7x24)回应客户咨询。在阿里云上,只需几分钟即可构建一个AI助手,并发布到网站、钉钉或微信公众号中。适用于以下客户场景:有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务缺少技术人员开发大模型问答应用智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。外部能力指的是大模型本身不具备的功能,例如实时信息获取、回答私有领域问题等。您可以在百炼控制台通过零代码的方式创建智能体应用,并将外部能力集成到应用中,从而解决您的具体业务需求。梦飞老师之前在社群内直播的时候对对话型机器人有比较深的理解了,大家也可以回顾一下之前的私域营销的Bot。智能体应用的典型场景1.私有领域知识问答:您只需准备好相关知识库文件,就可以在百炼控制台快速创建一个私有领域知识问答应用,应用场景包括公司制度、人员信息等。2.个性化聊天机器人:百炼提供了长期记忆功能,可以保存关键历史对话信息,从而提供个性化的聊天体验。平台还集成了夸克搜索和图像生成等插件,进一步扩展了聊天机器人的功能。3.智能助手:通过引入RAG(检索增强生成)能力、长期记忆和自定义插件等功能,您可以构建一个智能助手,帮助提升工作效率,如处理邮件、撰写周报等。
原文地址:[Building effective agents](https://www.anthropic.com/research/building-effective-agents)本文为上文的译文(包括图片汉化)过去一年,我们与多个行业的团队合作,协助他们构建大语言模型(Large Language Model,LLM)智能体。我们发现,最成功的实践并非依赖复杂的框架或专门的代码库,而是采用简单、可组合的模式。本文将分享我们通过与客户合作以及自主构建智能体所获得的经验,并为开发者提供实用的建议。[heading3]什么是智能体?[content]"智能体"(Agent)可以有多种定义。一些客户将智能体定义为能够长期独立运行的全自动系统,它们可以使用各种工具来完成复杂任务。另一些则用这个术语描述更具规范性的实现,即遵循预定义工作流程的系统。在Anthropic,我们将这些变体统称为智能系统(Agentic Systems),但在架构上区分为工作流(Workflows)和智能体(Agents)两种类型:工作流是通过预定义代码路径来编排LLM和工具的系统。智能体则是由LLM动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。下文将详细探讨这两种智能系统。在附录1("智能体的实践应用")中,我们将介绍客户在使用这类系统时发现特别有价值的两个领域。