「AGIへの道」飛書ナレッジベースへ直行 →

如何确认torch的版本

回答

要确认 torch 的版本,可以通过以下几种常见方法:

  1. 在 Python 脚本或交互式环境中,导入 torch 库后,使用 torch.__version__ 来获取版本信息。
  2. 如果您是在命令行中操作,可以打开终端或命令提示符,进入 Python 环境,然后执行上述获取版本的代码。

另外,在一些相关的配置和安装说明中也可能会提及 torch 的版本要求,例如:

  • 在某些项目的文档中,可能会明确指定所需的 torch 版本。
  • 像“延伸阅读”中提到的,对于一些特定的应用场景,可能会有关于 torch 版本的要求,如要求 pytorch 1.13.1 及以上版本。

同时,在处理与 CUDA 相关的配置时,要确保 pytorch 版本与 CUDA 版本相匹配,例如 cuda12.1 实测可以匹配 cuda 12.4 对应的 Pytorch 版本。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

Dreambooth 官方炼丹教程万字详解-Epochs\Batch size\学习率 等超参数调优 (一)

这个视频介绍了从头开始到高级水平使用Web UI和DreamBooth扩展进行稳定扩散训练的教程。内容涵盖了如何安装和更新Web UI的扩展,使用DreamBooth进行训练,准备训练数据集,检查点保存,如何处理过度训练,生成图像,以及如何使用AI进行图像升级等。此外,还介绍了如何在Google Colab中使用训练模型,进行微调和混合训练,以及如何解决内存不足错误等问题。这个视频介绍了如何将训练好的模型注入到自定义的Stable Diffusion模型中,和什么是主模型、次要模型和第三方模型,如何为新注入的主题模型选择合适的提示强度和CFG值等细节教程。这个视频主要介绍了如何降级CUDA和xformers版本以进行合适的训练,以及如何在仅具备8GB GPU的情况下进行LoRA训练。这个视频介绍DreamBooth技术的最佳训练设置和参数,并且举了使用0-100张不同张数训练集进行训练的案例,提供了对应的xyz轴对比图。还有文本引导视图合成、属性修改和配饰添加等内容。这个视频也是介绍各种设置和优化器的比较的,通过对比各实验的x/y/z网格图像来确定最佳训练模型。这个视频主要是讲如何升级到Torch版本2(PyTorch 2),以实现显著的图像生成和训练速度提升。视频教程这部分提供的视频很详细,我觉得讲解参数设置对比的视频比较重要,毕竟跑通流程并不难,能掌控参数训练出自己想要的模型才比较难,后续也会继续学习分享视频教程的笔记。Usage使用方法Create a Model创建一个模型1.进入Dreambooth选项卡。

[音乐学习] AI音乐向100分迈进,钢琴曲音质修复

以Windows为例:Python:由于实用到了f-string,至少要python 3.6以上版本,推荐现在比较流行的python 3.10ffmpeg:需要把ffmpeg里bin文件夹设置path环境变量,让python可以正常调用在cmd界面运行ffmpeg,可以查看到版本信息,就是变量设置成功了cuda:如果使用GPU来处理音频,可以用cuda提速,我是3050显卡,一首歌半分钟就转完了pytorch:一定要对应cuda对应的支持版本,否则程序无法正确运行目前cuda官网最新的版本是[12.4](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local#),对应找到配套的[Pytorch](https://pytorch.org/get-started/locally/)版本,cuda12.1,实测可以匹配cuda 12.4下载完以后默认安装就可以本地运行完成安装如果没有N卡,可以用cpu代替cuda进行运算处理,缺点就是速度慢一些,代码中可以做一些相应调整(后面会讲到)[heading1]生成MID文件[content]把源文件放在input文件夹(支持MP3,WAV)可以直接用vs code运行start.py,也可以右键点击文件夹空白,打开Powershell窗口输入在cmd环境运行原始的start.py代码里是默认cuda运行的如果用cpu跑,还得把里面的cuda改成cpu,有点麻烦,我做了个简单的条件语句,这样可以在判定cuda不可用时自动转为cpu模式。转谱完成后,在output文件夹找到对应的mid文件

延伸阅读

python 3.8及以上版本pytorch 1.13.1及以上版本transformers 4.26.1及以上版本建议使用CUDA 11.7及以上1、仓库克隆及依赖安装2、模型权重下载([链接](https://huggingface.co/Kwai-Kolors/Kolors)):或者3、模型推理:4、Web demo:[heading3]在Diffusers中使用[content]确保您安装了最新版本的diffusers(0.30.0.dev0):注意:KolorsPipeline默认使用EulerDiscreteScheduler作为噪声调度器。我们推荐使用该调度器时搭配guidance scale=5.0及num_inference_steps=50。KolorsPipeline同时支持EDMDPMSolverMultistepScheduler。在使用该噪声调度器时,推荐使用参数guidance scale=5.0及num_inference_steps=25。除了文生图能力,KolorsImg2ImgPipeline同时也支持图文生图功能。运行以下指令进行图像生成:

他の質問
pytorch
PyTorch 是由 Facebook 的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名,特别适合研究和快速原型开发。 在本地安装 ComfyUI 时,安装 PyTorch 有以下步骤: Windows 用户:建议在有 NVIDIA 显卡的电脑上使用。首先下载 Miniconda3,然后输入相应命令安装 Miniconda3,最后安装 PyTorch 的 nightly 版本。 Mac 用户:安装需要根据电脑的芯片不同输入不同的代码。首先下载 Miniconda3,然后输入相应命令安装 Miniconda3,最后不管是 M 芯片还是 x86 都复制相应代码到 Terminal 进行安装。 在 Python 的应用中,PyTorch 在深度学习方面发挥着重要作用。 从生成式 AI 季度数据报告 2024 年 1 3 月来看,2023 年 4 月 PyTorch 以 531.0 万的访问量位居第一,占赛道月总访问量的 27.8%;2024 年 3 月,PyTorch 以 379.0 万的访问量继续保持第一,占赛道月总访问量的 18.1%。近一年赛道单月访问量增加了 190.0 万,年增长率为 9.9%,但 PyTorch 的访问量减少了 152.0 万。
2025-02-18
什么是pytorch
PyTorch 是由 Facebook 的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名,特别适合研究和快速原型开发。在一些应用场景中,如 AI 音乐处理,需要对应 CUDA 对应的支持版本才能正确运行。目前 CUDA 官网最新的版本是版本,如 cuda12.1 实测可以匹配 cuda 12.4。下载完后默认安装即可。
2024-12-10
如何卸载pytorch
在 Mac 系统中卸载 PyTorch 的步骤如下: 1. 以您想要操作的目录为例,在终端中输入 `cd Documents/ComfyUI`,导航到 ComfyUI 目录。 2. 使用以下命令创建并激活 Python 虚拟环境: `python3 m venv venv` `source venv/bin/activate` 3. 执行以下命令卸载 PyTorch:`pip3 uninstall torch torchvision torchaudio`
2024-12-02
pytorch跟cuda之间的关系
PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。 例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。
2024-12-01
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
Pytorch cuda 对应的关系
在使用 PyTorch 与 CUDA 时,需要注意它们的对应关系。以 Windows 为例,如果您使用 GPU 来处理音频,可以用 CUDA 提速。目前 CUDA 官网最新的版本是 12.4(https://developer.nvidia.com/cudadownloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local),对应找到配套的 PyTorch 版本,例如 CUDA 12.1 实测可以匹配 CUDA 12.4。下载完成后默认安装即可。一定要确保 PyTorch 对应 CUDA 支持的版本,否则程序无法正确运行。如果没有 N 卡,可以用 CPU 代替 CUDA 进行运算处理,但速度会慢一些,代码中可以做相应调整。
2024-11-29
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
AI提示词超详细版本
以下是关于 AI 提示词的超详细内容: 在图像和视频生成阶段,分镜转图片和视频提示词大师的使用技巧包括:每次只处理 2 3 个分镜以确保提示词的精确性;对于关键场景,生成多个版本的提示词;根据不同工具的特点调整提示词的细节。图像生成工具方面,首选 LIBLIB 的 FLUX 模型,其次是谷歌的 ImageFX(网址:https://labs.google/fx/zh/tools/imagefx ,有网络门槛),还有即梦、可灵、Midjourmey(国内版“悠船”)。提示词辅助工具方面,通义万相的智能扩写只需输入简单的画面主题,点击“智能扩写”按钮就能自动生成包含场景描述、主体特征、构图和光线氛围等全方位的详细提示词;堆友的图推词功能可通过上传参考图片,自动分析并反推出详细的提示词。接入 Deepseek R1 的即梦,只需输入简单的主题或关键词,R1 就能写出 4 段不同风格且详细又丰富的提示词。 此外,还有一套万能文生图提示框架,您只需把脑子里能想到的、用来描述模糊想法的碎片词汇,随手替换到框架的最下方,然后发给任意一个 AI。但要注意,AI 生成的提示词水平与模型本身能力正相关,推理模型在揣摩人类意图上优于普通模型。 在写 AI 拟人化提示词时,要像写作文的 6 要素一样讲明白。描述越全面,生成的结果就越贴近想要的样子,但要注意避免啰里啰嗦导致 AI 理解出现偏差。您还可以把想要的直接塞给 LLM,让它进行补充。
2025-04-10
Stable Diffusion 是 Diffusion Model 的优化版本,引入了潜在空间(Latent Space)技术,这个潜在空间(Latent Space)是什么意思,它的实现原理是什么?
在 Stable Diffusion 模型中,潜在空间(Latent Space)指的是图像的潜在分布,它包含了与图像相关的所有信息。 图像被映射到潜在空间后,扩散过程在这个空间中进行。ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。在潜在空间中,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,这部分通常由潜在空间操作模块来实现。 在 Stable Diffusion 模型中,图像的潜在分布是通过一个编码器解码器结构来学习的。编码器将图像映射到潜在空间,而解码器则将潜在空间中的向量映射回图像空间。通过这种方式,模型可以学习到图像的潜在分布,从而实现图像生成、编辑和操作。 在采样过程中,Stable Diffusion 模型通过逐步降低噪声水平来生成图像。在这个过程中,模型根据当前的噪声水平预测图像的潜在分布,然后根据这个分布生成一个新的图像。这个过程重复进行,直到生成一个高质量的图像。 与之对应的是像素空间(Pixel Space),像素空间指的是图像中每个像素的原始颜色或强度值所组成的空间。图像可以看作是一个二维或三维的矩阵,其中每个元素代表一个像素。在像素空间中,图像的表示是密集的,且包含了大量的细节信息。
2025-03-21
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
很抱歉,您提供的内容中没有关于家庭用私人部署 deepseek 电脑配置的相关信息。如果您需要配置一台价格在 5 万以下、能流畅运行的家庭用电脑,以下是一些建议: CPU:可以选择英特尔酷睿 i9 或 AMD 锐龙 9 系列的高端处理器。 显卡:选择 NVIDIA GeForce RTX 40 系列的高端显卡,如 RTX 4080 或 RTX 4070Ti。 内存:32GB 或 64GB 的 DDR5 内存。 存储:1TB 或 2TB 的 NVMe SSD 作为系统盘,再加上大容量的机械硬盘用于数据存储。 主板:选择与所选 CPU 兼容的高端主板,以确保稳定性和扩展性。 关于模型版本,Midjourney 的 V5 模型是较新且先进的版本,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。您可以通过添加“v 5”参数或使用“/settings”命令并选择 MJ Version 5 来使用该模型。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
以下是为您推荐的家庭用私人部署 deepseek 电脑配置,价格在 5 万以下,能够较流畅运行: CPU:Intel Core i913900K 或 AMD Ryzen 9 7950X 显卡:NVIDIA GeForce RTX 4080 或 RTX 4070Ti 内存:32GB 或 64GB DDR5 高频内存 硬盘:1TB NVMe M.2 固态硬盘 + 4TB 机械硬盘 主板:支持所选 CPU 的高端主板,如 Z790 或 X670 系列 电源:850W 及以上的高品质电源 关于模型版本,Midjourney 最新的模型是 V5 版本,于 2023 年 3 月 15 日发布。使用此模型,您可以在提示词末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持如 tile 重复图案等高级功能。它在风格范围、图像质量、细节表现、对提示的响应以及图像提示性能等方面都有显著改进。
2025-03-17
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29