「AGIへの道」飛書ナレッジベースへ直行 →

Al发展到什么程度

回答

目前 AI 的发展呈现出多方面的特点和趋势:

  1. 千脑理论:新皮层由数以万计的皮质柱组成,每根柱子都会学习物体的模型,多模型设计发挥作用的关键是投票。智能机器的“大脑”也应由许多几乎相同的元素(模型)组成,并连接到各种可移动的传感器。大脑中的知识储存在参考框架中,机器也需要学会一个世界的模型。
  2. 通用化趋势:AI 将从专用方案过渡到更多的通用方案。通用电脑因更好的成效比导致技术更快进步,更多努力用于加强受欢迎的设计和支持其生态系统,导致成本降低和性能提升。同时,一些重要的未来应用如探索火星等需要通用方案的灵活性,而当前专用的深度学习模型无法满足。
  3. 游戏领域:随着生成式人工智能革命的进展,它将重塑用户生成内容(UGC),创造任何人都能构建游戏的世界,游戏创作将变得真正民主化,数以百万计的新游戏制作者将被创造出来。
  4. 企业发展:OpenAI 公司成立于 2015 年,总部位于美国旧金山,早期是非营利机构,后来改成有限营利形式。其使命是推进人工智能技术发展,为全球创造更安全、智能的未来。关于 OpenAI 公司的时间线,可参考 Wiki(https://timelines.issarice.com/wiki/Timeline_of_OpenAI)和 OpenAI Blog(https://openai.com/blog/)。
AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

多模型机制的:新皮层由数以万计的皮质柱组成,每根柱子都会学物体的模型,使多模型设计发挥作用的关键是投票。每一列都在一定程度上独立运作,但新皮层中的长距离连接允许各列对其感知的对象进行投票。智能机器的"大脑"也应该由许多几乎相同的元素(模型)组成,然后可以连接到各种可移动的传感器。有自己的参考框架:大脑中的知识被储存在参考框架中。参考框架也被用来进行预测、制定计划和进行运动,当大脑每次激活参考框架中的一个位置并检索相关的知识时,就会发生思考。机器需要学会一个世界的模型,当我们与它们互动时,它们如何变化,以及彼此之间的相对位置,都需要参考框架来表示这类信息。它们是知识的骨干。为什么需要通用人工智能(AGI)AI将从我们今天看到的专用方案过渡到更多的通用方案,这些将在未来占据主导地位,Hawkins认为主要有两个原因:第一个就和通用电脑战胜专用电脑的原因一样。通用电脑有更好的成效比,这导致了技术的更快进步。随着越来越多的人使用相同的设计,更多的努力被用于加强最受欢迎的设计和支持它们的生态系统,导致成本降低和性能的提升。这是算力指数式增长的基本驱动力,它塑造了二十世纪后半叶的工业和社会。Al将通用化的第二个原因是,机器智能的一些最重要的未来应用将需要通用方案的灵活性,例如Elon Musk就希望可以有通用智能的机器人来帮忙探索火星。这些应用将需要处理很多无法预料的问题,并设计出新颖的解决方案,而今天的专用的Deep Learning模型还无法做到这一点。

AI将使任何人都能够创建游戏

原文地址:https://a16z.com/2023/03/17/the-generative-ai-revolution/作者:A16Z分析师随着[游戏中生成式人工智能革命的](https://a16z.com/2022/11/17/the-generative-ai-revolution-in-games/)进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能;相反,创作者只会受到他们的精力、创造力和想象力的限制。想法并不便宜;他们会很珍贵。最重要的是,游戏创作将变得真正民主化,数以百万计的新游戏制作者将被创造出来。想法很便宜。只有你对它们做了什么才重要。——艾萨克·阿西莫夫根据UGC平台的历史、最近面向消费者的法学硕士的可用性以及对先前技术变革的观察,我们相信,从UGC游戏到人工智能驱动的UGC(我们将在下文中称为AIGC)的演变将会发生分两个阶段。

OpenAI 公司的时间线

OpenAl是一家人工智能研究公司,成立于2015年,总部位于美国旧金山。OpenAl的使命是推进人工智能技术的发展,为全球创造更加安全、智能的未来。OpenAI早期是个非营利机构,后来改成了有限营利形式。时间线延伸阅读:Wiki:https://timelines.issarice.com/wiki/Timeline_of_OpenAIOpenAI Blog:https://openai.com/blog/

他の質問
Gen - 3 Alpha
Gen3 Alpha 是 Runway 在为大规模多模式训练构建的新基础设施上训练的一系列模型中的第一个。与 Gen2 相比,在保真度、一致性和运动方面有重大改进,也是朝着构建通用世界模型迈出的一步。 官方介绍地址:https://runwayml.com/blog/introducinggen3alpha/ 创始人相关内容: 此外,在视频生成领域,一些小型参与者也有显著贡献,如 Runway 的 Gen3 Alpha 等模型。其他主要科技公司如 Meta、Google 等也在视频生成方面有重要进展。
2025-04-15
AL学习内容
以下为适合小白学习 AI 技术原理与建立框架的内容推荐: 1. 上篇文章介绍了 WaytoAGI 和学习研究 AI 的原因,解决了 Why 的问题。 2. 本次重点推荐两个对个人有重大帮助的视频,旨在解决 What 和 How 的问题: (女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,干货满满,新手友好,能带你 50 分钟速通 AI 大模型原理。 ,某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,此次推荐的是第二期。两期内容都值得观看,访谈非常硬核。
2025-04-11
如何学习al
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-01
sam altam
以下是关于 Sam Altman 的相关内容: OpenAI 的 75 封内部邮件披露了其早年的真实情况,包括与特斯拉 CEO 埃隆·马斯克的争斗和诉讼,展示了一群硅谷名流和天才 AI 研究者因理想聚在一起,又随着 OpenAI 的发展争权夺利的过程,还涉及早期讲故事、组建精英阵容、薪酬设计、股权分配等方面,以及首席科学家伊利亚·苏茨克维如何写双周报和制定 AGI 研究计划,还有阿尔特曼如何控制 OpenAI 并推动转型。 在一辆奔驰面包车里,38 岁的 OpenAI 联合创始人 Sam Altman 狼吞虎咽地吃着沙拉,身着蓝色西装内搭粉色礼服衬衫,略显抑郁地在伦敦兜风,这是他为期一个月全球短途旅行的一部分,他还回想着前一晚与法国总统马克龙的会面,波兰首相和西班牙首相也对 AI 非常感兴趣。 今天凌晨,OpenAI 的董事长 Sam Altman 公开一则包含大家感兴趣话题的专访,主持人是 Lex Fridman。
2025-03-31
function call
Function Calling 是一种将 AI 模型(如 ChatGPT、谷歌 Gemini 等)的能力与外部工具和 API 连接起来的方法。 在 ChatGPT 中: 为让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制重要且复杂。 OpenAI 发布函数调用及其他 API 更新后,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象。 本地写函数执行查询操作,如 this.app.mysql.select,函数名 getSqlQuery,参数:sql,更灵活。 在谷歌 Gemini 中: 讲解了 Function Calling 是什么及具体用法。 以从事金融业务为例,如搜索欧元兑美元的当前汇率,使用前需做好配置,可使用 Gemini 1.5 Flash 模型。 函数调用带来了多个优势,包括简化用户体验、减少错误发生可能性、为更高级自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,重新定义了人与技术的互动方式。
2025-03-31
function calling是什么
Function Calling 是一种在自然语言处理和人工智能模型中的技术和概念。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,使用前需要做好配置,如使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象,这是将 GPT 的能力与外部工具和 API 连接起来的新方法。例如,本地写函数执行 this.app.mysql.select,使操作更灵活。 对于 OpenAI 的 GPT 模型,Chat completions API 允许在请求中传递一系列函数描述,模型能据此生成函数参数并以 JSON 格式返回,可用于执行函数调用,函数调用的结果还能在后续请求中反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。 需要注意的是,模型生成的代码不一定都正确和安全,运行代码前要确保环境安全,最好在沙盒里。
2025-03-26
现在Ai已经发展到什么程度了
目前 AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮:继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙!R1 席卷全球,然后是 O3、Grok 3、Claude 3.7、GPT4.5 等,短短 3 个月内,AI 更新密集发布。然而很多人仍未察觉 AI 正在指数级加速,甚至抱怨 GPT4.5 表现不佳,但事实上,AI 发展已经是直线拉升状态,每天都在进步。 此外,Grok 语音模式已全面开放,支持 11 种模式(包括 2 种 18 禁),自带语音字幕,是学习英语的好工具,但目前仅支持英文。
2025-04-13
现在的AI发展到什么程度了
目前,AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮,继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙,更新密集发布,发展速度远超大多数人的预期,每天都在进步。 从技术层面看,Transformer 架构在 2017 年就被提出,但 AI 是近几年才爆发,其中重要因素之一是神经网络的规模。以 GPT 模型为例,从 2018 年第一代的 1 亿左右参数量,到 2023 年第四代的万亿规模(估计),随着参数量的增加,AI 的能力不断提升,在超过一定规模后,出现了“涌现”能力,智能程度飞速上升,但对于这种“涌现”出现的机理,目前还没有统一的解释。可以说,目前 AI 的发展更像是一种“发现”。
2025-03-14
在哪里可以看ai智能程度的排名
目前关于 AI 智能程度的排名,您可以参考以下信息: 《生成人工智能网络安全法案》(GAINS Act)中提到会对其他国家进行调查以确定美国在人工智能采用方面的排名。 AI 智库的月度榜单中,有国内月活榜和国内流量榜。例如在国内月活榜中,有绘影字幕、360 智脑 Chat、阿里通义听悟等产品的排名及相关信息;在国内流量榜中,有爱问财、扣子、Bigjpg 等产品的排名及相关数据。
2025-03-02
如何最大程度的利用自己的PPT,然后使用AI 来优化它?
以下是最大程度利用自己的 PPT 并使用 AI 来优化的方法: 1. AI 生成 PPT 的主要思路: 以爱设计为例,导入大纲到工具生成 PPT。其他工具操作方式大同小异,都是基于 Markdown 语法的内容来完成 PPT 的生成。具体步骤可移步到 MindShow、闪击、爱设计等章节。 优化整体结构,按照公司要求自行优化字体、图片等元素。针对下载后的 PPT,可以删改内容以达到心理预期。 2. 参考案例:卓 sir 利用 AI 完成 PPT 作业,虽然探索写 prompt 花了不少时间,但最终成功完成,包括大纲内容、排版、动画等,感觉良好。 3. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。https://zhiwen.xfyun.cn/
2025-02-26
现在ai发展到什么程度了?
目前 AI 的发展呈现出以下情况: AGI 方面:AGI 尚未取得巨大进展,仍处于不断探索和发展的阶段。AGI 分为五个等级,分别是具备基本对话能力的聊天机器人、具备人类推理水平的推理者、能执行全自动化业务但仍需人类参与的智能体、能够协助人类完成新发明的创新者以及能够自动执行组织全部业务流程的组织。 ANI 方面:ANI 得到了巨大发展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 机器学习方面:监督学习因现有数据快速增长、神经网络规模发展以及算力快速发展而近期发展迅速。 数据方面:数据集是由数据组成的集合,通常以表格形式出现,包括结构化数据和非结构化数据。获取数据的方式有手动标注、观察行为和网络下载等。同时,数据的质量和处理也很重要,并非数据多就有用,还需要有效处理不正确和缺少的数据。 大模型方面:开源大模型爆发,未来 AGI 竞争的关键是云端超级大模型,但通用大模型也遇到瓶颈,如算力和知识不够的问题。训大模型需要将饱含人类智慧的高含量知识训进去。
2025-02-09
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13