「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。该项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API。 语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持 mp3、mp4、mpeg、mpga、m4a、wav 和 webm 等输入文件类型。 转录 API 的输入是音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可添加更多带有相关选项的form 行设置其他参数。 翻译 API 输入为任何支持语言的音频文件,输出为英文文本,目前仅支持英语翻译。 对于默认情况下 Whisper API 仅支持小于 25MB 的文件,若有更长音频文件,需分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 可以使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2024-12-20
让旧照片动起来
以下是一些可以让旧照片动起来的工具和相关信息: Dreamina: 网址:https://dreamina.jianying.com/aitool/home?subTab 优点:不需要?,每天有免费额度。 注册:抖音号或手机号。 时间:5min 体验:上传一张离谱村的图片,即使不加提示词也能让图片有一些动态。父母上传风景照片后,有的水面动起来效果不错,有的画面扭曲。还引发了关于肖像权、版权、信息安全及技术意义的探讨。对于能否在扣子里一起用的问题,有插件的情况下应该可以,否则直接去官网更方便快捷。 Sora: 网址:https://openai.com/sora 优点:发布的成果好,集成在 openai 一套里可用。 限制:需要?,需要 gmail 注册,需要订阅后才能使用。 时间:30 60min 价格:GPT 4 20$一个月
2024-12-20
照片ai软件
以下为一些与照片相关的 AI 软件信息: 在 100 个 AI 应用中,涉及照片的有: AI 摄影参数调整助手,使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 全球 AI APP 增长榜图像类中: Retake AI,6 月 APP 下载量为 795,相对 5 月变化为 0.159。 DaVinci,6 月 APP 下载量为 751,相对 5 月变化为 0.049。 Viggle AI,6 月 APP 下载量为 741,相对 5 月变化为 822.333。 PhotoApp AI Photo Enhancer,6 月 APP 下载量为 688,相对 5 月变化为 0.186。 AI Mirror,6 月 APP 下载量为 676,相对 5 月变化为 0.432。 ToonMe,6 月 APP 下载量为 640,相对 5 月变化为 0.042。 图片增强 Top10 中: Cutout pro,4 月访问量为 1608 万,相对 3 月变化为 0.023。 Upscale media,4 月访问量为 432 万,相对 3 月变化为 0.073。 ZMO AI,4 月访问量为 338 万,相对 3 月变化为 0.161。 Neural.love Art,4 月访问量为 283 万,相对 3 月变化为 0.072。 Topaz Photo AI,4 月访问量为 247 万,相对 3 月变化为 0.047。 VanceAI,4 月访问量为 247 万,相对 3 月变化为 0.078。 bigjpgAI 图片无损放大,4 月访问量为 203 万,相对 3 月变化为 0.06。 Img Upscaler,4 月访问量为 203 万,相对 3 月变化为 0.042。 Let's Enhance,4 月访问量为 167 万,相对 3 月变化为 0.046。 Akool,4 月访问量为 122 万,相对 3 月变化为 0.173。
2024-12-20
什么是ai
AI(人工智能)是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,可将其当成一个黑箱,只需要知道它能理解自然语言就行。AI 技术再发展,其生态位仍是似人而非人的存在。 从历史角度看,最初计算机由查尔斯·巴贝奇发明,用于按明确程序运算。现代计算机虽先进,但仍遵循相同受控计算理念。有些任务无法明确编程让计算机完成,比如根据照片判断人的年龄,而这类任务正是 AI 感兴趣的。 在应用方面,AI 健身是利用 AI 技术辅助或改善健身训练和健康管理的方法,能为用户提供个性化指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2024-12-20
现在在国内有想要做这个AI方面的这个创业,我能做一些什么呢?
在国内进行 AI 方面的创业,以下是一些建议: 1. 数据处理方面: 认识到高质量数据处理服务的稀缺性,数据质量对于模型效果至关重要。 避免单纯依赖开源数据,谨慎考虑购买优质数据的投入风险。 2. 模型选择方面: 训练底层世界大模型需要巨大投入,除大厂外对其他公司较困难。 大多数国内公司往往先推出产品,而非集中精力专攻大模型。 3. 创业方向方面: 可以选择“唯快不破”的策略,尽量低成本、高速度地在小赛道中尝试。 例如辅助创作与学习(如 AI 智能写作助手、语言学习助手等)、推荐与规划(如商品推荐、行程规划等)、监控与预警(如健康监测、安全监控等)、优化与管理(如办公自动化、物流优化等)、销售与交易(如艺术作品生成与销售平台等)等细分领域。 需要注意的是,在这轮 AI 大潮中,新技术加速迭代是常态,不能期望在“技术稳定”时再出手。
2024-12-20
我想要让AI来操作,我这个电脑,然后呢?去充当一个AI客服的角色去回答微信上的问题有什么办法吗?
目前在微信中,Coze 平台是一个 AI 智能体创作平台,可以根据需求构建 AI 机器人并发布到多种社交平台。微信的不同功能在与 AI 对接上有所差异: 1. 个人微信/微信群:Coze AI 平台之前不支持直接对接,但国内版正式发布 API 接口功能后,直接对接已成为可能。 2. 微信公众号:Coze AI 平台支持对接,能让 AI 机器人自动回复用户消息。 3. 微信服务号:同样支持对接,可帮助企业提升服务效率。 4. 微信客服:Coze AI 平台支持对接,使 AI 机器人能够自动回答用户咨询,提高客服响应速度。 在把 AI 大模型能力接入微信后,对于类似客服的应用场景,存在模型幻觉导致胡乱回答的问题。对于非技术从业者,落地场景存在困难。一个问答机器人的界面配置包括 AI 模型、提示词、知识库。
2024-12-20
我想要实现一个微信ai客服,怎么弄呢
要实现一个微信 AI 客服,您可以参考以下两种方法: 方法一: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告诉您如何白嫖大模型接口。 2. 搭建,这是一个知识库问答系统,将知识文件放入其中,并接入上面的大模型作为分析知识库的大脑,最后回答您的问题。如果不想接到微信,自己使用,搭建完此系统即可,它也有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画等。 方法二: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库内容不足,则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 “AI 前线”能发布在您的微信公众号上,作为微信客服助手。 2. 准备以下内容: 根据 Bot 的目的、核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 整理。 创建一个自己的【知识库】,用于回答 AI 相关知识。 由于“AI 前线”要按照一定规则处理知识,创建一个【工作流】,控制 AI 按要求处理信息。 准备好自己的微信公众号,以便将机器人发布在微信公众号上。 以上就是实现微信 AI 客服的两种方式及具体步骤。
2024-12-20
如何自己制作ai
自己制作 AI 可以参考以下步骤: 1. 对于写作相关的 AI 应用,我们可以从人类驱动开始,使用 AI 来修改完善,比如先手动撰写博客文章,再利用自动填充和语法反馈工具改进。有时也可以先让 AI 生成写作内容,然后根据自己的需求和风格进行修改。 2. 若要打造微信 AI 机器人,比如“AI 前线”Bot: 确定功能范围,如支持用户发送“关键字”获取“AI 相关资料链接”,能回答 AI 相关知识(优先以自己的知识库回答,不足时调用 AI 大模型并在答案末尾添加相关信息),能发布在微信公众号上作为客服助手。 准备实现所需的内容,包括根据目的和核心能力编写 prompt 提示词,整理“关键字”与“AI 相关资料链接”的对应关系(可用 word、txt、excel 等),创建自己的知识库,创建工作流来控制 AI 按要求处理信息,准备好微信公众号。 设计详细步骤,先展示最终效果界面。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
flux和sdXL出图的区别
Flux 和 SDXL 出图主要有以下区别: 1. 生成人物外观:Flux 存在女生脸油光满面、下巴等相同外观问题,而 SDXL 相对在这方面有改进。 2. 模型构成:SDXL 由 base 基础模型和 refiner 优化模型两个模型构成,能更有针对性地优化出图质量;Flux 中 Dev/Schnell 是从专业版中提取出来,导致多样性丧失。 3. 处理方式:在低显存运行时,可采用先使用 Flux 模型进行初始生成,再用 SDXL 放大的分阶段处理方式,有效控制显存使用。 4. 模型参数和分辨率:SDXL 的 base 模型参数数量为 35 亿,refiner 模型参数数量为 66 亿,总容量达 13G 之多,基于 10241024 的图片进行训练,可直接生成 1000 分辨率以上的图片,拥有更清晰的图像和更丰富的细节;而 Flux 在这方面相对较弱。
2024-12-20