「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
python编写比较好的AI有哪些
以下是一些用 Python 编写的与 AI 相关的内容: 1. 对于 AI 的基础学习,您需要了解以下方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 数学基础:如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 评估和调优:了解如何评估模型性能(包括交叉验证、精确度、召回率等),以及如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构(包括前馈网络、卷积神经网络、循环神经网络)和常用的激活函数(如 ReLU、Sigmoid、Tanh)。 2. 如果您想在 Python 中安装 FittenAI 编程助手: 首先需要安装 Python 的运行环境,具体可参考 。 安装步骤:点击左上角的 File Settings Plugins Marketplace 。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 其功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code –开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择"Fitten Code 生成代码",然后在输入框中输入指令即可生成代码)、代码转换(Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择"Fitten Code –编辑代码",然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档)。 3. 若希望更深入地学习 Python 和 AI,至少要熟悉以下 Python 基础内容: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学习条件语句和循环语句来控制程序执行流程。 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程:了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:学习文件读写和文件与路径操作。
2024-11-21
如何训练Agent?
在人工智能领域中,训练 Agent 主要有以下方法和特点: 1. 基于迁移学习和元学习的 Agent 训练: 传统强化学习中,Agent 训练消耗大量样本和时间,泛化能力不足。为突破此瓶颈,引入迁移学习,促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力。 元学习让 Agent 学会从少量样本中迅速掌握新任务最优策略,利用已有知识和策略调整学习路径,减少对大规模样本集依赖。 但迁移学习和元学习面临挑战,如迁移学习在源任务与目标任务差异大时可能无效甚至负面迁移,元学习需大量预训练和样本构建学习能力,使通用高效学习策略开发复杂艰巨。 时间:21 世纪初至今 特点:迁移学习将一个任务知识迁移到其他任务;元学习学习如何学习,快速适应新任务 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM 优点:提高学习效率,适应新任务 缺点:对源任务和目标任务相似性有要求 2. 基于强化学习的 Agent 训练: 强化学习关注如何让 Agent 通过与环境互动自我学习,在特定任务中累积最大长期奖励。起初主要依托策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA。 随着深度学习兴起,深度神经网络与强化学习结合形成深度强化学习,赋予 Agent 从高维输入学习复杂策略的能力,有 AlphaGo 和 DQN 等成果。 深度强化学习允许 Agent 在未知环境自主探索学习,无需人工指导,在游戏、机器人控制等领域有应用潜力。 但面临诸多挑战,包括训练周期长、采样效率低、稳定性问题,在复杂真实环境应用困难。 时间:20 世纪 90 年代至今 特点:通过试错学习最优行为策略,以最大化累积奖励 技术:Qlearning、SARSA、深度强化学习(结合 DNN 和 RL) 优点:能够处理高维状态空间和连续动作空间 缺点:样本效率低,训练时间长
2024-11-21
我想设计房屋装修,有平面图,寻找你能参与的3D建模软件,自行设计房屋装修
以下是一些可用于房屋装修 3D 建模的软件: 1. Polycam:这是一个免费的 3D 建模工具。您只需上传至少 20 张图片或至少 20 秒的视频,Polycam 就能自动处理并构建一个 3D 模型。生成后还可以编辑模型,支持 12 种以上的格式导出到流行的 3D 软件中,如 Blender、SketchUp、Unreal、Unity 等。100 张图像的云处理建模时间大约 1 2 分钟。可以在网站以及 iOS 和 Android 应用中创建、编辑和存储 3D 模型。此外,Polycam 还可以轻松将无人机拍摄的图像转换为广阔的 3D 模型,与所有流行的无人机兼容。官方网站: 2. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 3. Autodesk Fusion 360:这是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能够帮助用户创建复杂的几何形状和优化设计。 4. nTopology:这是一款基于 AI 的设计软件,可以帮助用户创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 5. ParaMatters CogniCAD:这是一款基于 AI 的 CAD 软件,可以根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 需要注意的是,对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。
2024-11-21
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
360AI搜索
以下是关于 360AI 搜索的相关信息: 360AI 搜索是 360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 其定位是新一代答案引擎,在传统搜索的网页检索能力基础上,结合大型语言模型意图识别、信息提炼、归纳整理、生成文案等一系列技术能力,学习人类的思维和语言组织模式,生成有理有据、逻辑清晰的优质答案。 具有以下特点: 针对模糊问题,可通过反问和几轮交互理解问题,给出答案。 搜索全网上万条相关内容,深度阅读 20+网页,生成的答案非常丰富。 对比大模型产品特别是聊天机器人,回答更具时效性。 通过主动追问帮助用户延展学习,了解更多周边信息。 功能包括阅读提炼全网内容,并归纳总结,相当于替用户读了几十个精选网页,并进行归纳总结。其工作流程为:分析问题语义→提炼搜索关键词→查询全网相关内容→精选出参考价值较高的网页→进行结构化总结,重点突出,详略得当。 在国内总榜中排名第 3,4 月访问量为 1134 万次,相对 3 月变化为 13。 Web 端和 H5 端的网址为: ,手机端可扫码下载 360 AI 搜索 APP。
2024-11-21
我想写旅游攻略。请问有什么ai合适?
以下是一些适合用于写旅游攻略的 AI 工具和相关建议: 1. Bot 智能体:它自带的插件可以根据您想去的地方做出合适的规划,比如路线规划、周边规划等。您可以通过输入一定的 Prompt 描述,利用官方的优化功能获得不错的效果。 当您询问关于爬山的问题时,它会根据您的情况给出相应建议,如身体状况、路线和装备选择等。 当您询问登山路线时,它会为初学者推荐合适的线路。 当您询问登山装备时,它会告知必备的物品。 当您询问登山安全时,它会强调相关注意事项。 当您询问登山技巧时,它会提供提高技巧的方法。 2. 穷游网社区:这是一个 AI 旅游体验分享平台,利用自然语言处理和图像识别技术。它可以让用户分享旅游体验,发现更多美好。例如,当用户分享自己的欧洲之旅,APP 会根据照片的内容和文字描述,推荐相关的旅游攻略和景点。
2024-11-21
coze教学
以下是关于 Coze 教学的相关内容: 一泽 Eze 提供了万字实践教程,可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能跟学,学会 AI Agent 从设计到落地的全流程方法论。阅读指南中提到长文预警,可视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能按模板生成结构化内容的 AI Agent、开源 AI Agent 设计到落地的全过程思路、10 多项常用的 Coze 工作流配置细节、常见问题与解决方法。适合玩过 AI 对话产品的一般用户以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。本文不单独讲解案例所涉及 Prompt 的撰写方法,文末「拓展阅读」中有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容以供前置或拓展学习。 7 颗扣子 coze 的搭建有相关视频教程,包括: 第一颗扣子野菩萨出品:2 分钟解锁超野速度的图像流 bot 创建过程,献上野菩萨的明信片,链接:https://www.coze.cn/store/bot/7384556560263020583 。 第二颗扣子Stuart:2 分钟教您制作炉石卡牌,链接:https://www.coze.cn/s/i68g8bLY/ ,原理拆解: 。 第三颗扣子陈慧凌:2 分钟做毛毡效果,链接:https://www.coze.cn/s/i65gDW2Y/ 。 第四颗扣子银海:银河照相馆,链接:https://www.coze.cn/store/bot/7384885149625761801 。 第五颗扣子Speed 团队:Speed 团队菜品秀秀,链接:https://www.coze.cn/store/bot/7384434376446148618 ,原理拆解: 。
2024-11-21
我想要能够爬取我想要的视频的工作流有吗
以下为您提供两种关于视频爬取工作流的信息: 1. Stable Video Diffusion 模型的 ComfyUI 部署实战: 完成准备工作后运行 ComfyUI。 安装 ComfyUI Manager 插件。 下载工作流,使用 ComfyUI 菜单的 load 功能加载。 点击菜单栏「Queue Prompt」开始视频生成,可通过工作流上的绿色框查看运行进度。 生成的视频可在 ComfyUI 目录下的 output 文件夹查看。若出现显存溢出问题,请另行处理。工作流可关注公众号「魔方 AI 空间」,回复【SVD】获取。 2. 来来的 AI 视频短片工作流: 完整文档: 工作流概述: 概念设定:MJ 剧本+分镜:ChatGPT AI 出图:MJ,SD,D3 AI 视频:Runway,pika,PixVerse,Morph Studio 对白+旁白:11labs,睿声 音效+音乐:SUNO,UDIO,AUDIOGEN 视频高清化:Topaz Video 字幕+剪辑:CapCut,剪映 直播回放:
2024-11-21
学习AI
以下是为新手和中学生提供的学习 AI 的建议: 新手学习 AI: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 中学生学习 AI: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-21