以下是关于快速学习深度学习的一些建议和资源:
1. 阅读《Deep Learning in a Nutshell:History and Training》(https://developer.nvidia.com/blog/parallelforall/deeplearningnutshellhistorytraining/),这一系列博客提供了直观温和且不严重依赖数学或理论构建的深度学习介绍,涵盖了基础和核心概念、历史以及训练方法等内容。
2. 如果没有概率论和线性代数基础,可以学习相关课程。对于机器学习基础薄弱的情况,可以先看吴恩达的课程,再以李宏毅的课程作为补充。如果单纯想入门强化学习,只需要看李宏毅课程的前几节讲完神经网络的部分,大约需要 25 小时。
3. 学完理论知识后,可以跟着《动手学深度学习 https://hrl.boyuai.com/》动手学习,入门阶段看前五章,大约 10 小时。
4. 可以观看 B 站王树森的深度学习课程的前几节学习强化学习的基础知识点,大约 5 小时。
5. 到一定阶段后,可以通过做项目来巩固知识,比如阅读《动手学强化学习》(https://hrl.boyuai.com/)看到 DQN 的部分,大约十几小时。
此外,还可以观看“用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第 11 期”(https://www.bilibili.com/video/BV1iT421Q7M1),了解什么是 AI 大模型及其原理。其中提到生成式 AI 生成的内容叫做 AIGC,相关技术名词包括 AI(人工智能)、机器学习(包括监督学习、无监督学习、强化学习)、监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务包括聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)、深度学习(一种参照人脑有神经网络和神经元的方法)。
2024-09-17