定制化训练 AI 模型通常包括以下步骤和要点:
微调(Finetuning):
微调可以让您从 API 提供的模型中获得更多收益,例如获得比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省 Token、实现更低的延迟请求。
GPT3 已在大量文本上预训练,小样本学习时它能凭直觉判断任务并生成合理结果,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型进行微调后,不再需要在提示中提供示例,节省成本并降低延迟。
微调的高层次步骤包括准备和上传训练数据、训练新的微调模型、使用您的微调模型。
哪些模型可以微调:
微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。
安装:
建议使用 OpenAI 命令行界面。要安装,运行(以下说明适用于 0.9.4 及更高版本。此外,OpenAI CLI 需要 python 3。)
通过将相关行添加到 shell 初始化脚本(例如.bashrc、zshrc 等)或在微调命令之前的命令行中运行来设置环境变量。
选择 AI 模型:
通过选择您喜欢的 AI 模型,Cursor Chat 将使用该模型生成响应。您可以通过按 Ctrl/⌘/在模型之间切换。
默认情况下,Cursor Chat 使用 OpenAI 的 GPT4 作为其 AI 模型(具体来说,gpt4 标签指向我们的 GPT4Turbo 实例)。
您为 Chat 选择的 AI 模型将保存以供将来使用,不必每次打开 Cursor Chat 时都更改。
模型概述:
OpenAI API 由具有不同功能和价位的多种模型提供支持,还可以通过微调针对特定用例对原始基本模型进行有限的定制。
常见模型包括 GPT4、GPT3.5、DALL·E、Whisper、Embeddings、Codex、Moderation、GPT3 等,各自具有不同的功能和应用场景。
2025-03-03