「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
有没有大模型识别 CAD图纸的技术
目前存在一些可以辅助或自动生成 CAD 图的 AI 工具和插件,特别是在设计和工程领域。以下为您列举部分相关工具: 1. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,涵盖图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,有助于用户创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,能够帮助用户创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,能根据用户输入的设计目标和约束条件自动产生多种设计方案。 需要注意的是,这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。以上内容由 AI 大模型生成,请仔细甄别。
2025-03-01
Monica和Openai的记忆功能是如何让大模型产生记忆的?是什么原理?
大模型的记忆功能实现方式较为复杂,不同的模型可能有所不同。 OpenAI 的模型中,大模型 LLM 扮演了“大脑”的角色,其记忆功能可能通过“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构来实现。但需要注意的是,对于 ChatGPT 这类模型,实际上其本质上并没有直接的记忆功能。它能理解之前的交流内容,是因为每次将之前的对话内容作为新的输入重新提供给模型。这种记忆功能并非由大型模型直接实现,而是通过在别处进行存储来达成。 如果对话内容过长,可能会影响模型的整体性能。解决这个问题的一个简单方法是启动另一个对话框。对于之前的数据,通常只能进行总结。
2025-03-01
如何写好提示词
写好提示词(prompt)需要注意以下几点: 1. 明确任务:清晰地定义任务,比如写故事时应包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:若有特定期望结果,可提供示例帮助模型理解需求。 6. 保持简洁:提示词应简洁明了,过多信息可能导致模型困惑。 7. 使用关键词和标签:有助于模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需要多次迭代达到满意结果。 此外,在一些具体的工具中,如星流一站式 AI 设计工具,写好提示词还有以下要点: 1. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 2. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 3. 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有提示词权重进行编辑。 4. 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词等功能。 同时,要注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2025-03-01
AI编程工具推荐
以下是为您推荐的一些 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研的基础大模型微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议等帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 此外,使用 AI 编程工具(如 Cursor)的关键技能包括:准确描述需求、具备架构能力、专业编程能力和调试能力。关于不同 AI 编程工具的讨论和使用策略,您可以参考以下内容: 对于 Cursor,不同用户态度不一,有人觉得好用离不开,有人担心依赖心理或认为不好用,还有人对 AI 代码生成存在信任问题。作者建议使用 Git 管理代码版本,对 AI 代码进行 Review,任务分解为单一模块,借助 AI 生成测试代码等。 在 v0 与 Claude 的对比方面,Claude 在纯 UI 场景的生成效果往往更好,而 v0 和 Cursor 会因系统提示词和上下文猜测添加大量无关内容。v0 的优势在于傻瓜式操作。建议结合使用,当 Cursor、v0 效果不佳时,可将问题抽象独立出来,切换到 Claude、ChatGPT 或 Gemini 进行处理。
2025-03-01
图片识别
图片识别是一个复杂但重要的领域,以下是一些相关知识: 1. 对于印刷体图片的识别,通常会先将图片变为黑白、调整大小为固定尺寸,然后与数据库中的内容进行对比得出结论。但实际情况中,存在多种字体、不同拍摄角度等多种例外情况,通过不断添加规则的方法来解决不可行。神经网络专门处理未知规则的情况,其发展得益于生物学研究的支持,在数学上提供了方向,能够处理如手写体识别等未知情况。推荐阅读《这就是 ChatGPT》一书,作者被称为“在世的最聪明的人”,美团技术学院院长刘江老师的导读序回顾了整个 AI 技术发展的历史,对了解 AI 和大语言模型计算路线的发展有重要作用。 2. 受大脑神经元网络的启发,罗森布拉特提出应用感知机网络执行视觉任务,如人脸和物体识别。以识别手写数字为例,将感知机设计为“8”探测器,需先将图像转换为一组数值输入,确定感知机的权重分配和阈值,使其能产生正确输出。感知机有多个输入,每个输入对应像素强度且有自己的权重,通过类似行为心理学中的训练方式,在样本上进行监督学习来设定正确的权重和阈值。 3. 对于判断一张图片是否为 AI 生成,现在有不少网站通过对大量图片数据的抓取和分析来给出画作属性的判断可能性,例如 ILLUMINARTY 网站。但在测试中存在一些问题,如结构严谨的真实摄影作品可能被误判为 AI 作图,这反映出鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2025-03-01
本地知识库
以下是关于本地知识库的相关内容: 一、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要使用额外的软件 AnythingLLM。它包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 二、构建本地知识库 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式,提供了两种模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话,完成上述配置后即可与大模型进行对话。 三、RAG 是什么 利用大模型的能力搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需先了解 RAG。 RAG 实现方法是检索增强生成(Retrieval Augmented Generation),过程包括文档加载、文本分割、存储、检索和输出。 文档加载可从多种来源加载,包括非结构化、结构化和代码等数据。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换成向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 四、Obsidian 与 Cursor 结合 因为 Obsidian 浏览器剪藏插件强大而开始玩 Obsidian,想打造本地知识库加 AI 加持。Obsidian 的 AI 插件配置复杂,体验不佳。 发现 Cursor 能解决问题,主要有三类作用: 1. 用模糊问题检索笔记库,而非关键字。 2. 基于笔记库进行研究,结合多个笔记软件给出建议。 3. 生成和修改笔记,如生成整个笔记文件或修改笔记文案。教程中为照顾多数人会用默认中文且免费的 Trae 演示,其他 AI IDE 也大同小异。
2025-03-01
AIGC是什么?
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-03-01
AI是什么?
AI 是一种模仿人类思维、能够理解自然语言并输出自然语言的存在。对于没有理工科背景的人来说,可以将其视为一个黑箱。它就像传统道教中的拘灵遣将,通过特定的文字、仪轨程式来引用已有资源,驱使某种能在一定程度上理解人类文字的异类达成预设效果,且存在突破界限的可能。 从其发展历程来看,计算机科学和人工智能之父图灵在 1950 年的论文中提出了“图灵测试”的方法来判断机器是否具有智能。如今,像 ChatGPT 这样的产品在与人类交流方面已非常接近正常人类,尽管学术界对其是否通过图灵测试仍有争议。 AI 已不再局限于单一的技术和应用范畴,融合了众多学科知识,深入渗透到生活的各个层面,引领着第四次工业革命的浪潮,推动着智能化时代的到来。其发展速度远超预期,在为生活和工作带来变革的同时,也促使人类在哲学和思想层面去思考智能、人以及“我”的本质,帮助人类更透彻地领悟人生的意义。
2025-03-01
推理模型的技术原理
推理模型是一种新的范式,专注于解决复杂、多步骤的问题。其技术原理主要包括以下方面: 1. 思考输入意图:通过对输入内容的深入理解,明确问题的核心和需求。 2. 逐步提供答案:不像传统模型一次性给出结果,而是分步骤进行推理和回答。 3. 擅长领域:在解谜和高级数学等具有挑战性的任务中表现出色。 4. 与传统模型的区别:传统模型可能更倾向于直接给出结果,而推理模型会通过逐步思考来提供答案。 5. 成本和易错性:推理模型成本高昂且容易出错,适用场景有限。 6. 模型变体:如 DeepSeek 推出的多种变体(如 R1Zero 和 R1Distill)展示了不同的训练策略和性能表现。 7. 思考过程:类似于人类的慢思考过程,结合行业特点给出重要事项和先后顺序。 8. 运算原理:快思考是概率预测,脱口而出但不一定对;慢思考在概率预测基础上做二层逻辑,即链式思维,展开问题找多条路径并互相验证。 9. 适用场景:指令遵循领域 instruct 模型效果好,推理和创造性问题适合用慢思考的推理模型。
2025-03-01
怎么部署GPTs的api?
部署 GPTs 的 API 可以参考以下步骤: 1. 参考文章,了解之前的部署情况。 2. 登录地址,点击 Copy Link 进行复制 Actions API 链接。 3. 配置 GPTs Actions API: 打开 ChatGPT,点击创建 GPTs>Configure>Create new action。 输入来自 Gapier 的 Actions API 并点击 Import。 4. 授权: 在 Gapier 复制授权码。 在 Authentication 下选择配置图标,进入授权页面。 按照以下设置进行配置: Authentication Type:选择 API Key。 Auth Type:选择 Basic。 输入从网站上复制的授权码并点击 Save。 5. 引用 Action: 确定调用的 Action,并在 Prompt 中引用。 查看 Action 的方式分为两种: GPTs>Configure>Actions 页面。 网页查看,地址为。 另外一种引用的方式是:只要在 Instructions 中申明清楚需求,GPT 会自动选择合适的 API。 此外,还需注意以下几点: 1. 了解 OpenAPI 规范,通过 Schema 让 ChatGPT 懂这个 API。 2. 对于带参数的 Post 请求,需要创建规范文件、修改 GPTs 的 Action、调整 Prompt 等。 3. 注意如果不和说传入中文,它会给我们翻译了再传。
2025-03-01