「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
大模型调用tools
目前,绝大多数小型本地开源大语言模型以及部分商用大模型接口通常不支持稳定的 tool calling 功能。现有的解决方案多为微调 LLM,但会浪费大量时间和算力。有一种新的方法,即仅使用提示词工程和精巧的代码设计,就能让 LLM 获得稳定的 tool calling 能力。 通过多个不具备 tool calling 能力的 LLM 进行实验,结果显示所有模型都能成功执行调用工具这一步,并正确输出能被正则表达式抓取的字典。但在使用 python 解释器任务上,ollama 量化版本的 llama38b 和 mistral7b 模型受限于代码生成水平,不能很好地输出正确代码,导致无法稳定完成计算任务。在搜索知识图谱任务上,所有模型都能让工具返回相关知识,但 ollama 量化版本的 qwen27b 和 mistral7b 模型受限于逻辑理解能力,不能稳定理解知识图谱中多个关系边之间的逻辑关系。实验证明提示词工程可让 LLM 获得 tool calling 能力,但能否利用工具返回的信息解决用户问题,仍受 LLM 自身智能水平限制,较大的模型(如 gemma29b)对工具返回结果的利用能力更稳定。 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放的是 sys prompt、memory、user query;Tools 里放的是一些能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆是 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记,进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是更换 system prompt 和 tools。当然,想做深做好肯定还有很多坑需要踩。
2025-02-27
如何从入门到精通AI
以下是从入门到精通 AI 的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-27
anythingLLM和RAG Flow哪个部署更容易
RAG Flow 和 LLM 的部署难易程度如下: RAG Flow: 公网 MaaS:通常只需要一个 API key 即可对接,默认提供了通义千问。比较特殊的是 OpenAI 的接口上提供了修改 endpoint,也就是支持中间商。 本地部署:目前仅支持 Xinference 和 Ollama 方式部署。但是实际上只要是 API 接口一致,对接方式一致都可以用该方式对接。此处基础 Url 只需要写到 v1 为止,不需要写 embeddings 的二级接口。添加模型后需要在“系统模型配置”中设置,方能让模型生效。 LLM:关于 LLM 的部署难易程度,上述内容中未给出直接对比信息。但 Dify.AI 作为一个开源的大规模语言模型应用开发平台,具有快速部署等特点,用户可以在 5 分钟内部署定制化的聊天机器人或 AI 助手。 综合来看,仅根据所提供的信息,难以确切判断 RAG Flow 和 LLM 哪个部署更容易,还需结合更多具体的技术细节和实际需求进行评估。
2025-02-27
如何用扣子搭建自己的智能体
用扣子搭建自己的智能体可以参考以下步骤: 1. 创建智能体: 输入智能体的人设等信息。 为智能体起一个名称。 写一段智能体的简单介绍,介绍越详细越好,系统会根据介绍智能生成符合主题的图标。 2. 配置工作流: 放上创建的工作流。 对于工作流中的特定节点,如【所有视频片段拼接】,注意插件 api_token 的使用,避免直接发布导致消耗个人费用,可以将其作为工作流的输入,让用户自行购买后输入使用。 3. 测试与发布: 配置完成后进行测试。 确认无误后再发布。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。开发完成后还可发布到各种社交平台和通讯软件上供用户交互聊天。同时,像菠萝作词家这样的智能体,是专为特定需求设计的,能够帮助解决相关领域的问题。
2025-02-27
什么AI可以帮忙做PPT
以下是一些可以帮忙做 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 5. WPS AI:能快速生成 PPT,并支持修改主题配色、字体和添加动画等操作。 此外,在教学场景中,Claude 和 Gamma.app 结合使用也能帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。
2025-02-27
deepseek的提示词有哪些特别之处
DeepSeek 的提示词具有以下特别之处: 1. 语气还原:能还原帝王语气,相比其他模型输出,语气恰当,不过分用力,兼顾古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:与其他 AI 不同,其输出充满具体而惊人的细节,行文隐喻拿捏到位,高级且能让画面跃然纸上。 4. 增添场景描述:在独白文本中“自作主张”地加入括号中的场景描述,增强画面感,如“夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页”等。 5. 预判用户需求:对于简洁且无形容词、无倾向性的提示词,如“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”,能准确预判用户想要的输出,自然想到添加文学性。
2025-02-27
一个智能脚本的智能体提示词应该怎么写
以下是关于智能体提示词的相关内容: 对于儿童寓意故事创作者智能体,比如“此地无银三百两”的故事,描述了张三藏银并留下纸条,被隔壁王二发现并偷走银子的情节。 又如“熟能生巧”的故事,讲述了山海关题字中店小二用独特方式写出绝妙“一”字的经过。 在创建 Coze 智能体时,工作流中的每个节点有不同的细节。“开始”节点有 4 个输入变量,分别为 idea_txt(主题观点)、left_to_txt(画面左上角的文字)、right_to_txt(画面右上角的文字)、img_prmpot(画面中间图片生成提示词),且变量名称要与智能体中提示词的变量对应一致。“大模型”节点使用 DeepSeek R1 模型,提示词要求不复杂,说出需求即可。“文本”节点是为了将文案分句,可按“句号”分句,具体根据文案格式选择不同方式。“图像生成”节点使用官方插件,模型选“LOGO 设计”,若生成全景图,此插件效果可能不佳,建议选其他插件。“抠图节点”用于对上一节点生成的图片进行抠图。 总之,写智能体提示词要根据具体的应用场景和需求来确定,明确输入变量和模型要求等。
2025-02-27
提示词相关文章
以下是一些与提示词相关的文章: 云中江树: 小七姐:
2025-02-27
如何让大模型输出结构化的数据
要让大模型输出结构化的数据,可以采取以下几种方法: 1. 设计合理的 Prompt 工程: 明确的待处理内容指引:在构建 Prompt 时,清晰地定义需要处理的文本,并使用标记框起来,让模型准确识别待处理内容范围。 提供明确字段定义:具体化每个字段的名称、用途及要求,为模型提供清晰的提取方向。 异常处理:设置异常处理原则,如规定缺失数据使用默认值填充,特殊数据类型符合标准格式,确保模型输出的完整性和一致性。 要求结构化输出:指示模型以结构化格式(如 JSON)输出数据,便于后续处理和系统集成。 2. 搭建工作流: 模型选择:根据需求选择合适的大模型,如默认的豆包 32k 或更大的 kimi128k 等。 配置参数:进行批处理,输入相关参数,如文章内容正文、url 链接和标题等。 提示词输入:将相关内容一起送给大模型进行总结,并拼接成特定格式输出。 汇总格式化最终输出内容:使用代码节点对大模型输出的内容进行最终格式化。 3. 探索 JSON Output 应用: 无模板的 Excel 导入:改变传统数据导入方式,通过 Prompt 读取想要的数据列。 AI 审核员:在人审环节前加 AI 审,提供相关知识和少量示例,输出简单结果。 分类器:一个 Prompt 即可完成分类任务。 应用于其它业务场景:如在一些业务场景中落地,提高效率。 但需要注意的是,过去大模型还不太成熟,应用过程可能会有一些困难。
2025-02-27
如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档
要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行: 1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。 2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。
2025-02-27