「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
如何使用deepseek
使用 DeepSeek 的步骤如下: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的相关活动和分享: 1. 2025 年 2 月 6 日的分享中提到了关于 DP 模型的使用,包括其功能、优势、问题、审核方法、使用建议、使用场景和案例展示等。 2. 2 月 23 日的 AI 切磋大会是 DeepSeek 专场,包括深度聚焦、实战导向、全网联动等亮点,活动流程包括签到、全国联动、全国联动使用方法分享、分城市各自案例分享和自由探讨等环节。
2025-02-14
推荐些跑团的AI网站
以下为您推荐的跑团相关 AI 网站是 WaytoAGI 网站(https://www.waytoagi.com/),该网站具有以下功能: 1. 您可以在此与 AI 知识库进行对话,询问任何关于 AI 的问题。 2. 集合了精选的 AI 网站,能够按您的需求帮您找到适合的工具。 3. 提供了精选的 AI 提示词,您可以复制到 AI 对话网站使用。 4. 会将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望能成为您学习 AI 路上的好助手。
2025-02-14
我现在在储能领域工作 ,我现在 可以用AI做什么支持我的工作和生活
在储能领域工作,您可以通过以下方式利用 AI 支持工作和生活: 工作方面: 优化储能系统的设计和运行:利用 AI 分析数据,优化设备参数模型搭建,提高储能系统的效率和稳定性。 物流和配送规划:借助 AI 优化储能设备的运输路线和配送计划,降低运输成本。 知识沉淀和体系文档优化:利用 AI 辅助整理和优化储能相关的技术手册、工艺问题分析等文档。 生产计划和排产:通过 AI 制定更合理的生产计划和排产方案。 生活方面: 教育学习:利用 AI 实现个性化学习,获取储能领域的专业知识。 创意启发:例如在艺术创作方面,像作画,可以将自己的构思与 AI 生成的创意相结合。 需要注意的是,在使用 AI 时要正确引导和合理运用,避免过度依赖。
2025-02-14
采用GPL许可证的AI开源模型有哪些
以下是一些采用 GPL 许可证的智谱·AI 开源模型: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: WebGLM2B:代码链接无,模型下载: MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: MathGLM500M:代码链接无,模型下载: MathGLM100M:代码链接无,模型下载: MathGLM10M:代码链接无,模型下载: MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。我们训练的 CogVLM17B 是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接无,模型下载: Visualglm6B:VisualGLM6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(,模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本。上下文 token 数:2K,代码链接:,模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。上下文 token 数:4K,代码链接: AgentLM13B:上下文 token 数:4K,代码链接无,模型权重下载链接: AgentLM70B:上下文 token 数:8K,代码链接无,模型权重下载链接:
2025-02-14
如何进行知识蒸馏
知识蒸馏(Knowledge Distillation)是一种将复杂模型的知识转移到简单模型中的方法。其核心思想是利用预训练好的复杂模型(教师模型)指导较小模型(学生模型)的训练,使学生模型能模仿教师模型的行为,同时保持较小规模和较高效率。 蒸馏的核心在于让学生模型学习教师模型的输出分布,而非仅仅是硬标签(ground truth)。具体而言,教师模型为输入文本生成软标签(soft labels),即概率分布,学生模型通过模仿教师模型的软标签来学习。 目前以 Ollama 上下载的模型为例,最小的有 DeepSeekR1DistillQwen1.5B,最大的有 DeepSeekR1DistillLlama70B,都是来自于 Deepseek R1 671B 的蒸馏,而非官方的 Deepseek 版本。仔细观察模型名称可以看到,Distill 代表“蒸馏”,Qwen 或者 Llama 代表使用的基础模型,一般是千问或者 Llama 。
2025-02-14
ai为何使用GPU而不是CPU
AI 使用 GPU 而不是 CPU 主要有以下原因: 1. 强大的计算能力:GPU 在并行处理大量数据方面具有显著优势。例如,同年《Largescale Deep Unsupervised Learning using Graphics Processors》这篇论文指出,利用 GPU 比 CPU 快 70 倍,能将数周的工作压缩到几天甚至一天完成。 2. 适应深度学习需求:大型神经网络、输入的多个变量以及有效的反向传播 GPU 实现等方面,GPU 表现出色。如 MNIST 数据库能达到令人惊叹的 0.35%错误率。 3. 处理图形相关运算:GPU 原本就是为处理图像和图形相关运算工作而设计,其采用的核心技术如硬件 T&L 等,适合 AI 中的图形处理任务。 4. 分担 CPU 工作:GPU 的诞生源自对 CPU 的减负,使显卡减少对 CPU 的依赖,并进行部分原本 CPU 的工作。 5. 算力优势:算力可以直接转化为 GPU,一张显卡中的 GPU 是计算能力的关键。 6. 适应 AI 模型需求:当今所有 AI 模型都在使用大量专用芯片的 GPU 卡上运行。例如 NVIDIA A100 GPU 有 512 个“张量核心”,能大幅提高计算效率。但实际应用中,也存在一些限制,如数据传输、内存容量和优化方法等问题。
2025-02-14
我需要查找关于stable diffusion的教学
以下是为您整理的关于 Stable Diffusion 的教学资源: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 运作原理:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门视频教程: https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe https://zhuanlan.zhihu.com/p/622238031 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 更多入门教程:
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的定义和区别
MIT 模式:这是一种相对宽松的开源许可模式。允许使用者对软件进行修改、再发布,并且几乎没有限制,只要求在再发布时保留原版权声明和许可声明。 Apache 模式:提供了较为宽松的使用条件,允许修改和再发布代码,但要求在修改后的文件中明确注明修改信息。同时,还包含一些专利相关的条款。 GPL 模式:具有较强的传染性和约束性。如果基于 GPL 许可的代码进行修改和再发布,修改后的代码也必须以 GPL 许可发布,以保证代码的开源性和可共享性。 BSD 模式:也是一种较为宽松的许可模式,允许使用者自由地修改和再发布代码,通常只要求保留原版权声明。 总的来说,这些开源许可模式在对使用者的限制和要求上有所不同,您在选择使用开源模型时,需要根据具体需求和项目情况来确定适合的许可模式。
2025-02-14
开源模型除了MIT模式外,还有哪些模式?
开源模型常见的许可模式除了 MIT 模式外,还有以下几种: 1. Apache 许可模式:允许在商业和非商业项目中自由使用、修改和分发代码,但需要保留版权声明和许可声明。 2. GPL(GNU General Public License)许可模式:具有较强的传染性,要求基于该代码的衍生作品也必须以 GPL 许可发布。 3. BSD(Berkeley Software Distribution)许可模式:允许自由使用和修改代码,并且对衍生作品的许可要求相对宽松。 需要注意的是,不同的开源许可模式在使用条件、义务和限制方面可能存在差异,在选择和使用开源模型时,应仔细阅读和理解相关的许可协议。
2025-02-14