「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
ai生成服装模特视频
以下是一些与生成服装模特视频相关的 AI 技术和应用: 1. ViViD 视频虚拟试穿技术:由阿里巴巴开发,可以替换视频中人物的衣服,生成真实自然的视频,支持多种服装类型,在视觉质量、时间一致性和细节保留方面表现优异。相关链接:https://x.com/imxiaohu/status/1796019244678906340 2. 生成式人工智能在营销中的应用:Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 此外,还有一些其他相关的 AI 技术,如: 1. 山寨版阿里 Animate Anyone 开源:利用图像和视频中的人物姿势来合成动画,Novita AI 开源并提供 API 支持,提供照片和视频即可自动生成动画。相关链接:GitHub:https://github.com/novitalabs/AnimateAnyone ;API:https://novita.ai/playgroundanimateanyone ;https://x.com/imxiaohu/status/1796191458052944072 2. 音频生成方面,有 Udio130 音乐生成模型,能生成 2 分钟的音频,提升曲目连贯性和结构,新增高级控制功能。相关链接:详细:https://xiaohu.ai/p/8738 ;https://x.com/imxiaohu/status/1795999902830629249 3. 代码生成方面,有 Mistral AI 推出的 Codestral 代码生成模型,支持 80 多种编程语言,包括 Python、Java、C 等,能自动完成代码、编写测试,并能填补未完成的代码部分,拥有 32k 上下文窗口,在多项基准测试中表现出色。相关链接:详细:https://mistral.ai/news/codestral/ ;https://x.com/imxiaohu/status/1795987350713192937 4. 音乐演示方面,有 Suno 音乐演示,新视频展示从任何声音创作歌曲。相关链接:https://x.com/imxiaohu/status/1795976717905043467
2025-01-06
ai工具网站
以下是一些 AI 工具网站: 通用 AI 工具大全网站: 帮助建筑设计师审核规划平面图的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,能引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息集成与管理。 产品经理 AI 工具集: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。每个工具都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的工具。
2025-01-06
ai生成服装模特图的工具
以下是一些可以生成服装模特图的工具: 1. DALLE 2:已被用于广告,如亨氏、雀巢、Stitch Fix 等公司的相关应用。Stitch Fix 正在尝试使用它根据客户对颜色、面料和款式的偏好创建服装可视化。 2. 可以使用万能固定句式来生成服装模特图,如“「主题」+「风格」+「材质」+「元素」+「玄学佐料」”,并通过具体的示例和咒语关键词来实现,如“Chinese dress”。 3. TryOffDiff:能够逆向打造服装图片,将衣服从照片中“摘取”生成标准化服装图,保留图案、褶皱、徽标等精细细节,适用于商品目录制作及电商平台服装展示需求。详细介绍:
2025-01-06
纳米ai制作视频教程
以下是纳米 AI 制作视频的教程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 实战方面: 1. 准备内容:先准备一段视频中播放的内容文字,可以是产品介绍、课程讲解、游戏攻略等,也可以利用 AI 生成这段文字。 2. 制作视频:使用剪映 App 进行简单处理。电脑端打开剪映 App,点击“开始创作”,进入创作页面。选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。添加完成后,在界面右侧将准备好的文字内容替换默认文本内容。 另外,在 Adobe 的 Generate video 中,在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。然后选择 Generate 进行生成。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。内容由 AI 大模型生成,请仔细甄别。
2025-01-06
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
目前最前沿的ai服装模特app
目前较为前沿的 AI 服装模特相关的应用有: Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 InterAlia 可以帮助搭配服装。 在小红书上,有通过 AI 制作服装如 AI 小绿裙实现变现的案例,新手可用 mewxai 或幻火来制作,熟练者可用 sd 或 mj 制作。 此外,还有用 AI 定制萌娃头像等相关应用。
2025-01-06
开源模型与闭源模型调用
开源模型与闭源模型调用相关信息如下: 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址:https://opencompass.org.cn/arena 。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型都是从零开始训练的,并进行了大量原创性的优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,这触犯了 OpenAI 使用协议中明确禁止的条款。 在 LLM 应用程序中,OpenAI 已成为语言模型领域的领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。当项目投入生产并开始规模化时,常见的选择包括切换到 gpt3.5turbo、与其他专有供应商(如 Anthropic 的 Claude 模型)进行实验、将一些请求分流到开源模型等。开源模型可以使用多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、来自主要云提供商的原始计算资源等。
2025-01-06
免费写论文的ai
以下是一些免费写论文的 AI 工具和相关服务: 1. 免费选项: Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx) Claude 2(https://claude.ai/) 2. 计算机领域(尤其是人工智能话题): https://www.aminer.cn/,可订阅感兴趣的话题,提供免费的 AI 理解论文服务,多数论文有免费的 PDF 下载链接。 3. 论文写作中常用的 AI 工具和平台: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 需要注意的是,使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。其训练主要依赖大量的文本数据。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。其训练需要多种类型的数据,包括文本、图片、音频等。 此外,还有相对规模较小的模型,这些模型通常是为完成特定任务而设计的。 大模型的应用场景包括: 1. 对于回答的精准性、全面性要求较高的问题,不同的大模型各有优劣,可兼听获取更好的答案。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06
大模型家族、类别、应用场景
大模型主要分为以下两类: 1. 大型语言模型:专注于处理和生成文本信息,主要应用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。 大型多模态模型与大型语言模型的不同点包括: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 对于聊天大模型的深度用户,常见的应用场景有: 1. 对回答的精准性、全面性要求较高的问题,因为不同大模型各有优劣。 2. 需要多方交叉验证,规避模型幻觉的客观事实类问题。 常用的模型网站有: 1. 2. 3. 4. 5. 下载模型后,不同类型的模型放置位置如下: 1. 大模型(Ckpt):放入 models\\Stablediffusion 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 4. Embedding 模型:放入 embeddings 目录
2025-01-06