「AGIへの道」飛書ナレッジベースへ直行 →

如何用大模型生成思维导图

回答

大模型是一种基于深度学习技术的语言模型,它可以自动生成文本。在解决复杂的推理任务时,大模型可以通过学习思维链推理的演示,生成思维链。以下是一些与思维导图相关的 AI 工具:

  1. GitMind:一款免费的跨平台 AI 思维导图软件,可以通过 AI 自动生成思维导图。支持提问、回答、自动生成等多种模式。
  2. ProcessOn:国内思维导图+AIGC 的工具,可以利用 AI 生成思维导图。
  3. AmyMind:一个轻量级的在线 AI 思维导图工具,无需注册登录即可使用,支持自动生成节点。
  4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可以一键拓展思路,生成文章大纲。
  5. TreeMind:一款"AI 人工智能"思维导图工具,可以输入需求由 AI 自动完成思维导图生成。
  6. EdrawMind:提供了一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助用户提升生产力。

总的来说,这些 AI 思维导图工具都能够通过 AI 技术自动生成思维导图,大大提高了思维导图的制作效率,为知识工作者带来便利。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)
他の質問
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
怎么用大模型赚钱
以下是关于如何用大模型赚钱的一些分析和建议: 1. 面向各国政府做基础大模型本土化预训练:很多 Global 的量化基金在中国会水土不服,大模型也存在类似情况。OpenAI、Google、Meta 的模型在中文能力和对中国国情的优化上存在不足,不符合政策要求。这给了国内大模型公司做本土化预训练的机会,只要做到国内领先,即使和世界领先的模型有代际差,也能有市场。 2. 关注行业应用:大模型在企业中的落地应用是关键。目前大模型是典型的赢家通吃领域,巨头在资金、技术和数据方面有优势。但大模型企业需要将技术与更多场景结合,打造落地应用。例如,Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI 自主做出。 3. 竞争格局与成绩:国内大模型行业已形成以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。2024 年是国内大模型落地元年,中标项目数量和金额大幅增长。如百度在中标数量和金额上排名领先,在金融等细分行业也表现出色。 需要注意的是,大模型领域竞争激烈,只有极少数公司能成功,且需要将大模型商业化,否则企业可能在赛道比拼中失败。同时,大模型的发展与国家政策密切相关,需要受到有效监管才能健康发展。
2025-03-25
你是一名DEEPSEEK专家,请用大白话交给小白掌握deepseek的使用,举例说明
DeepSeek 的使用对于小白来说可能有点复杂,但我尽量用大白话给您解释清楚。 比如说,您想让 DeepSeek 帮您生成“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”这样的内容。 DeepSeek 会这样来处理: 1. 先回顾玄武门之变的历史背景,比如这场政变发生在 626 年,李世民杀了兄弟,逼父亲退位等。 2. 思考李世民当晚的心理,可能有释然、愧疚、恐惧、自责等多种复杂情绪,还要考虑他是被迫还是早有预谋。 3. 要让生成的独白不仅符合历史事实,还要有文学性,体现人性的复杂。比如要平衡他的野心与自责,对未来的抱负与对过去的悔恨。 4. 考虑当时的文化背景,像儒家思想对孝悌的重视,李世民的行为违背了这些伦理,他可能会内心挣扎,还可能为自己的行为找正当理由。 5. 按照您的需求,给独白加上一些文学修辞,像比喻、对仗、意象等,增强画面感。 另外,DeepSeek 还有个很厉害的地方,就是它能在独白文本中“自作主张”地加入括号里的场景描述,让整个输出更有画面感。比如“(夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页)”、“(墨迹在‘弑’字上晕开一团)”、“(忽然扔笔,抓起铜镜)”这些句子,很难相信是 AI 写的。 总之,使用 DeepSeek 时要考虑很多方面的因素,它能根据您的提示词和需求,生成很精彩的内容。
2025-03-13
如果我是一个只会使用大模型对话,不了解提示词逻辑,想要逐步学习ai相关知识的人,你推荐什么呢
以下是为您逐步学习 AI 相关知识的推荐: 1. 关于大模型的思考与探讨:普通用户使用大模型时,语言不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 2. 垂类模型与大模型公式:通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 3. 提示词的挖掘:写提示词未挖掘出大模型的天花板,还有提升空间。 4. 读书方法与提示词相关书籍推荐:读书最有效的是笨方法,不取巧,花时间读。并推荐了从数学、作家、代码、原理角度写大模型的四本书。 5. 内置思维链提示词:针对小技巧类的思维链提示词有新模型能力涌现和大模型内置两个趋势,但对于某些如 COT 这类的内置可能会改变大模型的原味,对此存疑。 6. 编写提示词的经验与思考: 原汁原味与生效元素的平衡:为得到原汁原味的效果,需考虑是否反刻某些元素;生效的小技巧大模型可能会内置,如指定角色效果有变化。 压缩与歧义的处理:找到凝练的核心概念(a)后,根据对象用不同方式(b)表达,核心在于找到准确的 a,而寻找 a 的方法目前主要是多读多泡在相关领域。 持续学习与输出:通过阅读吸收输入,转换为自己的语言输出,与大模型交互提炼精华,多输出促进吸收输入。 7. 调教 AI 和提示词: 是否需要提示词工程,是否需要学提示词:持反对观点,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。 和大模型交互需要遵循规则吗:不需要。网上流传最广的提示词方法论,是“给大模型一个角色”,这是一个好的策略,但不是必须遵循的原则,甚至所有规则都不是必须遵守的。可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。 用 Markdown 格式清晰表达问题:Markdown 通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。其优势包括结构清晰、格式化强调、适用性广。 8. 小白学习指南: 第一步:要有一个大模型帐号,至少已经熟悉和它们对话的方式。推荐 ChatGPT4 及国产平替: 第二步:看 OpenAI 的官方文档:
2025-03-06
怎么利用大模型训练自己的机器人
利用大模型训练自己的机器人可以参考以下内容: OpenAI 通用人工智能(AGI)的计划显示,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的 AI 模型,将足以处理复杂的机器人学任务。常识推理隐藏在视频和文本数据中,专注于文本的 GPT4 在常识推理上表现出色。Google 最近的例子展示了机器人学能力可从大型视觉/语言模型中学习,在语言和视觉训练基础上,只需最少的机器人学数据,视觉和文本任务的知识就能转移到机器人学任务上。特斯拉训练的“Optimus”通过人类示范学习抓取物体,若人类示范是先进机器人学性能所需的一切,在互联网上所有视频上训练的大模型肯定能实现惊人的机器人学性能。 梦飞提供了在自己的电脑上部署 COW 微信机器人项目的教程,程序在本地运行,若关掉窗口进程结束,想持续使用需保持窗口打开和运行。以 Windows10 系统为例,注册大模型可参考百炼首页:https://bailian.console.aliyun.com/ ,需更改"model"和添加"dashscope_api_key",获取 key 可参考视频教程。 张梦飞提供了从 LLM 大语言模型、知识库到微信机器人的全本地部署教程,部署大语言模型包括下载并安装 Ollama,根据电脑系统下载:https://ollama.com/download ,安装完成后将下方地址复制进浏览器中确认安装完成:http://127.0.0.1:11434/ 。下载 qwen2:0.5b 模型,Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑通过 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,复制命令行粘贴回车等待下载完成。
2025-03-03
利用大模型构建系统的工具
以下是关于利用大模型构建系统的工具的相关内容: 大模型的发展历程: 2017 年发布的 Attention Is All You Need 论文是起源。 2018 年,Google 提出 BERT,其创新性地采用双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模为 110M 到 340M。 2018 年,OpenAI 提出 GPT,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模为十亿到千亿。 Inhai:Agentic Workflow:AI 重塑了我的工作流: 以 Kimi Chat 为例,它利用「网页搜索」工具在互联网上检索相关内容,并基于检索结果进行总结分析,给出结论。同时,PPT 中介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做额外补充。 Planning:Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。例如,先识别男孩姿势,再使用相关模型合成女孩图像,接着使用图像理解文本模型,最后语音合成输出。 Multiagent Collaboration:吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作,共同开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演 Agent 的“大脑”。规划包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标处理复杂的任务,反思和改进指对过去行动进行自我批评和自我反思,从错误中学习并改进未来步骤,提高最终结果质量。记忆用于存储信息。 开发:LangChain 应用开发指南 大模型的知识外挂 RAG: LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具构建 RAG 应用: 数据加载器:从数据源加载数据并转换为文档对象,包含 page_content 和 metadata 属性。 文本分割器:将文档对象分割成多个较小的文档对象,方便后续检索和生成。 文本嵌入器:将文本转换为嵌入,用于衡量文本相似度实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象,常见实现是向量存储器检索器。 聊天模型:基于大模型生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)
2025-02-28
如何自动生成思维导图 有推荐的工具吗
以下是一些可以自动生成思维导图的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,包括通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动生成思维导图。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能借助 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,在使用<generateTreeMind>插件节点自动生成思维导图时,有以下配置思路: 1. 确定处理方式:一次精读任务仅需生成一张思维导图,选择“单次”处理方式。 2. 确定输入:在输入区,该插件仅需设置{{query_text}}变量,格式为 string 字符串,引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。 3. 确定输出:观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来定位所需字段。若需要图片格式的思维导图,确定 pic 为所需输出。
2025-04-03
ai思维导图提示词
以下是关于 AI 思维导图提示词的相关内容: 在文生图的提示词中,例如“”,来告诉 AI 不要的内容。 在 AI 作图的创作中,有以下要点: 1. 趣味性与美感概念:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 2. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 优化和润色提示词(Prompt)的方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述需求,而非过于笼统的词语。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2025-03-31
思维导图生成ai
以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,可通过 AI 自动生成思维导图,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,还有一些关于思维导图生成的相关信息: 在使用 flowith 时,可通过引用节点技巧让 AI 根据特定参照输出高关联度内容,还可对比不同模型输出择优深挖,在满意内容节点添加“文本编辑器显示”进行精加工。 12 月更新的生成式 AI 年终数据中,思维导图相关的如 Whimsical Al 等也有相关流量等数据统计。
2025-03-25
思维导图自动生成
以下是关于思维导图自动生成的相关内容: 使用 Coze 工作流自动生成思维导图: 在上一步生成英文阅读大纲后,使用<generateTreeMind>插件节点自动生成思维导图。 1. 确定处理方式:选择“单次”,因为一次精读任务仅需生成一张思维导图。 2. 确定输入:在输入区,该插件仅需设置{{query_text}}变量,格式为 string 字符串,引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。 3. 确定输出:观察输出区,所需的是图片格式的思维导图,确定 pic 为需要的输出字段。 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 自动生成思维导图的在线工具 ChatMind: 开发者@石天放开发的 ChatMind 是利用 AI 自动生成思维导图的在线工具,只需要输入问题、文章、数据就可以,对于问题还能自己获取答案,可导出图片与 Markdown 文档两种格式。链接:https://www.chatmind.tech/
2025-03-23
关于思维导图的提示词
以下是关于思维导图提示词的相关信息: 在文生图的提示词中,例如“”,用来告诉 AI 我们不要的内容。 在星流一站式 AI 设计工具中,提示词用于描绘您想生成的画面。输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。写好提示词要注意内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。还可以调整负面提示词,点击提示框下方的齿轮按钮弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。利用“加权重”功能,可在功能框增加提示词并进行加权重调节,权重数值越大越优先,也能对已有的提示词权重进行编辑。此外,还有翻译功能可一键将提示词翻译成英文,以及删除所有提示词和会员加速等辅助功能。 对于 SD 新手,有以下提示词模板的相关网站:Majinai:
2025-03-14
思维导图
以下是关于头脑风暴和思维导图的相关内容: 头脑风暴常用的 20 个 prompt: 1. Brainwriting 研究写作:“我们一起为头脑风暴,尽量写下很多点子,然后我可以在它们的基础上加入相关的想法。请用 markdown 结构你的回答。” 2. Reverse Brainstorming 反向头脑风暴:“我们为使用反向头脑风暴——故意提出糟糕的点子可以激发创意并引导我们走向新的方向。” 3. Mind Mapping 思维导图:“请为创建一个完整的思维导图,从一个中心概念开始,然后向外扩展与其相关的分支。” 4. Assumptions 假设:“列出你对的假设。然后,你如何挑战这些假设来提出创新的点子?描述你的过程。” 5. SWOT Analysis SWOT 分析:“让我们对进行 SWOT 分析,考虑内部的优势/劣势和外部的机会/威胁。然后写一个结论进行总结。” 6. SCAMPER SCAMPER 法:“使用 SCAMPER 清单对进行构思。我们如何替代、结合、适应、修改、用于其他用途、消除或逆转?详细描述你的答案。” 7. Six Thinking Hats 六顶思考帽:“使用六帽方法:红帽是乐观的,黑帽看到的是负面的等等。从不同的思维角度对进行构思。” 8. Worst Possible Idea 最坏的点子:“故意为想出很糟糕的点子,以新的方向激发创意。稍微扩展你的答案,解释为什么这些点子不好。” 9. Trigger Words 触发词:“这里有一些随机词:相关的新点子?” 10. Questioning 提问:“生成关于的问题,比如谁、什么、什么时候、在哪里、为什么、怎么样?将问题转化为点子。” 11. Rolestorming 角色扮演:“扮演。我的目标是找到新的改进方法。” 12. Scenarios 场景:“想象一个的最佳情境:一切都进行得很顺利。现在想象一个最” 关于儿童新闻百事通中思维导图的应用: 1. 应用缘由: 从新闻到旧闻,拒绝缪闻,追本溯源。 由点及面,广度与深度兼顾,培养小朋友的探究意识与能力。 凝练提升,形成强大的知识网络,助力小朋友研究性思维、统合型能力的培养。 2. 具体操作: 通过新闻涉及的主题词/关键词,或是小朋友对新闻中的感兴趣点,提取背后的知识点。 调用“generateTreeMind”插件,创建一个思维导图,清晰展示知识点的起源、发展和相互关系,凝练知识网络。 通过“快捷指令”提醒小朋友,可以使用此功能。 3. 实操展示: 初步尝试:放在聊天机器人的工作流里,能使用,但调用比较慢,且不能顾到全局。 后期调整:直接调用插件+提示词直接 cue 到,Precess on VS 树状图:前者不能直接出图,后者可以且点击后可以直达网站,进行二次修改。 实操展示包括新闻激发、提炼关键词/主题词/兴趣点,并发出指令“思维导图”。
2025-03-13
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
我想用扣子搭建有着我自己思维的智能体,让他能进行日常对话和创作
以下是用扣子搭建具有自己思维的智能体,使其能进行日常对话和创作的步骤: 1. 创建智能体:使用单 Agent 对话流模式。 2. 编排对话流:点击创建新的对话流并与智能体关联,在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT,使用代码节点进行数据处理,注意代码节点输出的配置格式。 3. 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,同时在智能体的编排页面进行测试,确保对话流执行成功。 4. 发布:点击发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,填写表格,选发布范围时可选择仅自己可用以加快审核。 此外,扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法,能解决大模型的知识不足问题。在智能体中可运用自己的知识库,如收集地道口语表达的短句。还可为智能体添加开场白以提升体验。 在多智能体模式设置中,包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理和对话体验等,在设计智能体交互流程时应形成完整互动链条,采用循环机制而非单向流程,可通过旅游场景中景点推荐、路线规划和食宿安排等智能体的例子来理解。
2025-03-16
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14