Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai行业最赚钱的工作是干什么

Answer

在 AI 行业,以下工作通常被认为有较高的收入潜力:

  1. 数据科学家:负责收集、分析和解释大量数据,以帮助企业做出决策和优化业务流程。
  2. 机器学习工程师:设计、开发和优化机器学习模型和算法,应用于各种领域。

此外,还有一些因素影响着在 AI 领域的赚钱能力:

  1. 掌握的 AI 技能在各行各业的应用,如金融、医疗、制造业等,能增加就业机会和职业发展可能性。
  2. 对于基于人工智能的客户支持、销售、营销等以前人类无法完成的自动化任务的掌握,可为收入增长做出重大贡献。
  3. 更专业的服务加速出现,熟练 AI 的专业人员能够产生高附加值,管理人工智能工人并产生更多高价值收入。比如在降低开展业务和投资成本、实现收入增长及利用人工智能创新传统行业等方面表现出色的人员。

但需要注意的是,是否能在 AI 行业赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

学了AI有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等。学会了AI技术,可以在这些岗位上找到工作,获得不错的收入。此外,AI技术在各行各业都有应用,比如金融、医疗、制造业等,掌握AI技能可以增加就业机会和职业发展的可能性。然而,是否能赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。

观点:红杉资本 | 2024年:AI的机遇、现状和未来预测

除了降低成本外,以前人类无法完成的自动化任务(基于人工智能的客户支持、销售、营销)也将为收入增长做出重大贡献。就专业职业而言,虽然劳动力可能不容易被取代,但更专业的服务将加速出现,使公众能够获得这些服务。同时,市场将经历分叉增长,熟练AI的专业人员能够产生高附加值,管理人工智能工人并产生更多高价值收入。在以下三个因素的推动下,拥抱人工智能的公司的竞争优势将继续上升:开展业务的成本降低投资成本降低收入增长及利用人工智能创新传统行业最后感谢Pat Grady、Sonya Huang和Konstantine Buhler在红杉资本的AI Ascent 2024活动中的演讲。原文链接如下:https://www.sequoiacap.com/article/ai-ascent-2024/

AI 知识自测:你是真的大佬吗?

从结果看,AI从业者的最佳变现方式是?A.做产品B.卖课程C.送外卖D.写公众号

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
怎么用大模型赚钱
以下是关于如何用大模型赚钱的一些分析和建议: 1. 面向各国政府做基础大模型本土化预训练:很多 Global 的量化基金在中国会水土不服,大模型也存在类似情况。OpenAI、Google、Meta 的模型在中文能力和对中国国情的优化上存在不足,不符合政策要求。这给了国内大模型公司做本土化预训练的机会,只要做到国内领先,即使和世界领先的模型有代际差,也能有市场。 2. 关注行业应用:大模型在企业中的落地应用是关键。目前大模型是典型的赢家通吃领域,巨头在资金、技术和数据方面有优势。但大模型企业需要将技术与更多场景结合,打造落地应用。例如,Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI 自主做出。 3. 竞争格局与成绩:国内大模型行业已形成以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。2024 年是国内大模型落地元年,中标项目数量和金额大幅增长。如百度在中标数量和金额上排名领先,在金融等细分行业也表现出色。 需要注意的是,大模型领域竞争激烈,只有极少数公司能成功,且需要将大模型商业化,否则企业可能在赛道比拼中失败。同时,大模型的发展与国家政策密切相关,需要受到有效监管才能健康发展。
2025-03-25
普通人通过ai赚钱
以下是一些普通人通过 AI 赚钱的方式: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝的模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询,将客户引流到私域接单变现。 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超过 10 分钟就能出图。 变现方式:受众群体多为宝妈,变现方式多样,单价不低。但在平台引流要注意隐蔽,避免被平台检测限流或封号。 2. AI 产业中的机会 基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,普通人若无强资源应谨慎入局,可考虑“合作生态”的切入机会。 技术层:技术迭代速度快,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层:是广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 3. 内容创作 像作者本人是 AI 的受益者,AI 是生产力工具,能降本增效,但仍需投入大量时间和精力,起到辅助作用。 同时存在 AI 的受害者,他们的技能失效,AI 未创造足够新的生存空间。 作者作为坚定的 AGI believer,期望 AI 能做出重大科学发现、治愈疾病、消除饥饿和肥胖、给每人发钱,让人类自由从事想做的事。
2025-03-23
如何靠AL赚钱
以下是一些靠 AI 赚钱的方法和要点: 1. 明确盈利方式:您需要清楚如何通过产品或服务赚钱,即让人们为您的产品/服务支付的钱超过提供该产品/服务的成本,同时不能忘记考虑自身成本。 2. 免费产品策略:如果您的产品是免费的,不要试图通过购买用户来增长,而是要做出让人们愿意与朋友分享的东西,因为靠广告变现对于此类产品来说通常很困难。 3. 付费产品策略: 对于客户生命周期价值(LTV)小于 500 美元的付费产品,通常负担不起销售费用,可尝试使用如 SEO/SEM、广告、邮件等不同的用户获取方法,并争取在 3 个月内偿还客户获取成本(CAC)。 对于 LTV 超过 500 美元的付费产品,通常能负担得起直接销售费用,可先自己销售产品以了解有效方法,《Hacking Sales》是一本有用的参考书籍。 4. 尽快实现“泡面盈利”:即赚足够的钱,让您可以靠吃泡面维持生计,这样能掌握自己的命运,不受投资者和金融市场的任意摆布。 5. 关注现金流:密切关注您的现金流,避免在未意识到的情况下把钱用光。
2025-03-21
AI怎么赚钱
以下是关于 AI 赚钱的一些信息: 首先,对于 GPTs/GLMs 能否赚钱的问题,答案是能,但大多数人不能。从一个 AI 产品经理的角色复盘 2023 年的所见所闻所感来聊,虽然目前最大的第三方 GPTs 商店 BeBeGPTs 收录了大量数据,但结果显示赚钱并非易事。 其次,关于如何靠 GPTs/GLMs 赚钱,OpenAI 刚推出 GPTs 时,有人将其比作苹果时代的 AppStore。产品的核心竞争力和护城河不在于 Prompt,而在于数据和服务(定制化 Tools)。例如,WebPilot 的作者通过自己开发的搜索接口提供搜索服务接入 GPTs,小红书写作专家的作者通过收集大量小红书数据和规则包装成 GPTs。也许能赚到红利的钱,但这不是长久赚钱的方法。 另外,AI 收费按 Token 计费,Token 相关问题包括:Token 是双向收费的,汉字、阿拉伯语等不同语言的计费方式,Token 在企业信息化过程中的意义等。在企业环境中,了解 Token 有助于更好理解 AI 在企业中的落地,它类似于积木,通过搭建来完成应用从而提高效率。
2025-03-16
ai赚钱项目
以下为一些关于 AI 赚钱项目的信息: 1. 在杭州站的活动中,参与者们分成 6 个小组进行 AI 赚钱快闪活动,在短时间内产出 AI 体验产品并定价,如“五行和合的 AI 头像”、“AI 随心签”、“AI 祈福壁纸”等,其中“AI 祈福壁纸”项目得到场地老板立刻买单。 2. 对于 GPTs/GLMs 能否赚钱的问题,答案是能,但大多数人不能。文章将从“钱”的角度,以 AI 产品经理的角色复盘 2023 年的所见所闻所感来探讨 AI 赚钱(应用落地)这件事。 3. 刘小排非程序员出身,用 AI 打造多款赚钱产品,强调“洞察需求”与产品验证是核心竞争力,并分享了低成本创业方法。
2025-03-15
我想通过学习ai的技能赚钱,是长久主义者
以下是为您提供的关于通过学习 AI 技能赚钱的相关信息: 首先,阳萌认为在 AI 学习中,最后还是走仿生的方法,即有一个足够长的 Context。这引发了关于记忆保存位置的探讨,比如手机适合收集信号产生本地 Context,阳萌赞成将训练好的模型部署在端侧,记录知识和记忆的 Context 不能跑到云端。同时,要抛开表面事实,回归基础原理,找到突破关键,追求长期全局最优解,相信长期主义,持续学习,自我觉察和自我进化,因为世界是参差的,唯有持续学习能抵御未来的变化。相关视频链接: 另外,关于如何靠 GPTs/GLMs 赚钱,OpenAI 推出 GPTs 时,有人将其比作苹果时代的 AppStore。产品的核心竞争力和护城河不在于 Prompt,而在于数据和服务(定制化 Tools)。传统 SaaS 的能力会被碎片化并整合到各种 GPTs 里,OpenAI 成为流量入口。例如,WebPilot 通过开发搜索接口提供服务接入 GPTs,小红书写作专家通过收集数据和规则包装成 GPTs。靠红利赚钱不是长久之计。
2025-03-12
飞书多维表格+deepseek可以干什么
飞书多维表格和 DeepSeek 结合可以实现以下功能: 1. 打造专属的好文推荐网站:当您阅读到好文章时,可以一键存储到飞书多维表格,经过 AI 处理,自动在您的博客网站上呈现出来。实现该功能需要以下步骤: 创建带有 AI 能力(以 DeepSeek R1 为主)的飞书多维表格。 使用 Trae 生成网页,呈现多维表格的内容。 使用 Trae 生成浏览器插件,一键存入多维表格。 2. 批量处理信息,提升工作效率:用户可以批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷。 3. 为非技术人群提供便捷的 AI 应用:普通人无需编程知识也能轻松使用 AI。
2025-04-10
我现在想做个AI社区应该干什么
如果您想做一个 AI 社区,可以考虑以下方面: 1. 举办多轮比赛并发放高额奖金,例如设置第一名奖金 6000 多,第二名 4000 等,并制作动态海报。 2. 与小红书进行战略合作,鼓励成员在小红书开设自媒体账号,为优质作者提供流量扶持和问题解决帮助。 3. 在北京亚运村设置线下场地,例如赛博禅新的大聪明常驻,方便成员面基。 4. 规划酒吧相关事宜,比如准备开酒吧,名字叫 Bard AGI,并规划好相关细节,还可考虑在北京五道口附近开正式酒吧。 5. 注重社区搭建及成员互动,社区可由朋友圈发起,成员因兴趣相聚,线下见面能增强成员归属感,大家共同成长,一起创业。 6. 为学习者提供清晰的学习路径,从 AI 基础知识到进阶技术,逐步培养他们成为创作者和引领者。 7. 为创作者提供资源,帮助其创作出优质的内容与服务,满足企业需求,为社区发展注入活力。 8. 与企业合作,为其提供优质的 AI 内容与服务,从学习者中获取潜在的工具推广流量。 9. 组织各类活动,如线上线下的活动让对 AI 感兴趣的同学见面,拉近彼此距离,后续还有十几节课。 10. 建立高质量的交流社群,例如讨论话题仅围绕实际需求与 AI 创新应用玩法,持续探索人与 AI 共生新模式,审核门槛尽可能拉高,要求有发布过立足真实需求、有真价值的、让人兴奋的原创 AI 实践分享,群内时刻有脑暴,互相启发,开阔眼界,并整理日常价值讨论成内部总结文。
2025-03-25
waytoagi是干什么的?
WaytoAGI 是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 它具有以下特点和功能: 1. 是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 2. 2023 年 4 月 26 日诞生,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量,是很多 AI 爱好者知识的源头。社群的 Slogan 是让更多的人因 AI 而强大,有很多学社和共学共建的活动。 3. 提供以下功能: 和 AI 知识库对话:可以在这里问任何关于 AI 的问题。 AI 网站:集合了精选的 AI 网站,按需求找到适合的工具。 AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 知识库精选:将每天知识库的精华内容呈现给大家。 打开“waytoagi.com”就可以找到社群。WaytoAGI 网站和 WaytoAGI 知识库各自独立又相互关联,希望成为您学习 AI 路上的好助手。
2025-03-23
comfyUI能干什么?不能干什么?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 应用场景包括: 1. 作为一个强大的可视化后端工具,可以实现 SD 之外的功能,如调用 api 及本文所讲的内容等。 2. 可根据定制需求开发节点或模块。 3. 用于抠图素材的制作,如绿幕素材的抠图,还可以自动生成定制需求的抠图素材。 官方链接:https://github.com/comfyanonymous/ComfyUI
2025-03-21
comfyUI能干什么?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点和功能: 简介:可以将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,能导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 学习使用的原因: 更接近 SD 的底层工作原理。 实现自动化工作流,消灭重复性工作。 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 api 等。 可根据定制需求开发节点或模块。 例如有人因工作室需要抠图素材,传统途径存在问题,而基于 ComfyUI 可以快速自动生成定制需求的抠图素材。 此外,8 月 13 日的 ComfyUI 共学中,包含了对其功能及相关课程内容的介绍,还有关于建筑设计师兼职做 ComfyUI 生态建设、相关模型与工作流的应用案例、内容分享的调整与筹备安排等方面的讨论。
2025-03-21
manus用来干什么的
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。 它具备以下特点和功能: 1. 区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 2. 具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。通过规划、执行和验证三个子模块的分工协作,实现对复杂任务的高效处理。其核心功能由多个独立模型共同完成,分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。 3. 技术架构还包括以下关键组件: 虚拟机:运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。 生成物:能够生成各种类型的输出,如文本、表格、报告等。 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。 4. 采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。 5. 当前的 Manus 相当于 AI 操纵着一个没有图形界面的 Linux 虚拟机和浏览器,能感知电脑环境,执行各类操作。能跑各种 linux 下的指令、库、程序(cd、ls 指令、python 等),也能访问各种网页、获取一些 API 接口的数据,但因没有图形界面,无法运行图形程序。为方便用户通过键鼠介入,提供了用户可视的命令行视窗、浏览器、vscode 两种选项,方便查看运行指令、接管网页和修改文件。 6. 核心亮点包括: 自主执行:AI 可直接执行任务,而不仅仅是提供建议。 类人工作模式:可解压文件、浏览网页、阅读文档、提取关键信息。 云端异步运行:后台执行任务,完成后自动通知用户。 持续学习和记忆:从用户反馈中学习,提高未来任务准确性。 “心智与手”理念:Mens et Manus(拉丁语),象征 AI 实际执行能力。
2025-03-15
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10