Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 学习机

Answer

以下是关于 AI 学习机的相关信息:

  • 在医疗保健领域,AI 凭借其神经网络基础,可能通过元学习更快获取知识,并有望成为人类和下一代专家的教师。其性质允许我们拆解研究其内部工作机制,创造学习的飞轮。
  • 沃尔夫勒姆对“人工智能”的定义:基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括人类生成的科学文本等大型语料库或世界上发生的实际经验的语料库,除作为“原始学习机器”外,还能从大量与人类相关的知识中学到东西。
  • 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是为人工智能和深度学习设计的高性能移动工作站。知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这类笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘,采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU,提供大容量内存和高速 NVMe SSD 存储选配,预装 NVIDIA CUDA、cuDNN 等深度学习框架和各种 AI 开发工具,价格相对较高,通常在 2000 美元以上。用户应根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。需注意,此内容由 AI 大模型生成,请仔细甄别。
Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

[title]为了在医疗保健中产生真正的改变,AI需要像我们一样学习鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

沃尔夫勒姆:人工智能能解决科学问题吗?

[title]沃尔夫勒姆:人工智能能解决科学问题吗?[heading2]人工智能最终会不会无所不能?So what do I actually even mean by “AI” here?In the past,anything seriously computational was often considered “AI”,in which case,for example,what we’ve done for so long with our Wolfram Language computational language would qualify—as would all my “ruliological” study of simple programs in the computational universe.But here for the most part I’m going to adopt a narrower definition—and say that AI is something based on machine learning(and usually implemented with neural networks),that’s been incrementally trained from examples it’s been given.Often I’ll add another piece as well:that those examples include either a large corpus of human-generated scientific text,etc.,or a corpus of actual experience about things that happen in the world—or,in other words,that in addition to being a “raw learning machine” the AI is something that’s already learned from lots of human-aligned knowledge.那么我在这里所说的“人工智能”到底是什么意思呢?在过去,任何认真计算的东西通常都被认为是“人工智能”,在这种情况下,例如,我们长期以来使用Wolfram语言计算语言所做的事情就符合资格——就像我对简单程序的所有“规则学”研究一样。计算宇宙。但在这里,我将在很大程度上采用更狭义的定义,并说人工智能是基于机器学习(通常通过神经网络实现)的东西,它是根据给出的示例进行增量训练的。我通常还会添加另一件事:这些例子要么包括人类生成的科学文本的大型语料库等,要么包括关于世界上发生的事情的实际经验的语料库,或者换句话说,是在除了作为“原始学习机器”之外,人工智能还可以从大量与人类相关的知识中学到东西。

问:目前有什么主流AI笔记本电脑推荐?

[title]问:目前有什么主流AI笔记本电脑推荐?截止2024年5月,主流的AI笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。这类笔记本通常配备了强大的GPU(如NVIDIA RTX系列)、大容量内存和高速固态硬盘,以满足AI模型训练和推理的计算需求。一些知名品牌的AI笔记本包括:1.微软(Microsoft)第11代Surface Pro2.微星(MSI)Creator/Workstation系列3.技嘉(GIGABYTE)Aero/Aorus系列4.戴尔(Dell)Precision移动工作站5.惠普(HP)ZBook移动工作站6.联想(Lenovo)ThinkPad P系列这些笔记本一般采用英特尔酷睿或AMD Ryzen的高端移动CPU,配备NVIDIA RTX 30/40系列或AMD Radeon Pro专业级GPU。同时也提供了大容量内存(32GB以上)和高速NVMe SSD存储选配。除了硬件配置,这些AI笔记本还通常预装了NVIDIA CUDA、cuDNN等深度学习框架,以及各种AI开发工具,为用户提供了开箱即用的AI开发环境。当然,这类高端AI笔记本价格也相对较高,通常在2000美元以上。用户可以根据自身的AI应用需求和预算情况,选择合适的型号。同时也要关注笔记本的散热、续航等实际使用体验。内容由AI大模型生成,请仔细甄别

Others are asking
哪里可以找到免费且可以系统学习机器学习的课程
以下是一些可以免费系统学习机器学习的课程资源和学习路径: 1. 对于大型语言模型(LLM)开发的学习: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法,掌握相关论文,如 Attention is All You Need、BERT 论文等。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 2. 神经网络架构方面: 神经网络是机器学习文献中的一类模型,在完成吴恩达的 Coursera 机器学习课程后,可以寻找 Geoffrey Hinton 的机器学习神经网络课程。 一般神经网络架构可分为三类:前馈神经网络,这是实际应用中最常见的神经网络类型;循环网络,在他们的连接图中定向了循环,更具有生物真实性。 3. 强化学习的入门学习: 如果基础薄弱,可先学习概率论和线性代数相关课程。 对机器学习无基础的话,先看吴恩达的课程,再以李宏毅的课程作为补充,只看前几节讲完神经网络的部分。 学完后跟着《动手学深度学习 https://hrl.boyuai.com/》动手学习,只看前五章。 接着看 B 站王树森的深度学习课程的前几节学习强化学习基础知识点。 最后可以看《动手学强化学习》,看到 DQN 的部分。
2025-03-22
如何学习机器学习
以下是关于如何学习机器学习的一些指导: 我们可以模拟大脑中最简单的元素——神经元,在计算机中构建人工神经网络,并通过举例来教它解决问题,这类似于新生儿通过观察周围环境来学习的过程。您可以对婴儿的学习方式做一个小调研,了解婴儿大脑中的基本要素。 人工智能的一部分方法是基于数据来使计算机学会解决问题,这样的方法称为机器学习。对于机器学习的学习,本课程不涉及经典机器学习,建议您学习单独的《机器学习入门》课程(https://github.com/microsoft/MLForBeginners)。 Genie 模型的创造运用了机器学习,科学家们通过让计算机观察大量东西从中找出规律来教会其思考。就像学生通过练习问题变得更好一样,Genie 模型通过学习大量网络视频来理解和记忆其中的内容。它具有非常大的数字网络即模型参数,就像拥有众多代表知识的琴键。
2024-09-25
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20