「AGIへの道」飛書ナレッジベースへ直行 →

deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具

回答

在 Dify 的 agent 的 prompt 中实现调用工具的方法如下:

  1. 提示词注入阶段:
    • INSTRUCTION 为注入到系统提示中的字符串,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。
    • TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应使用无关紧要的工具作为示例,避免 LLM 混淆。
    • tools_instructions 是将通用的工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。
    • REUTRN_FORMAT 定义了调用 API 的格式。
  2. 工具结果回传阶段:
    • 利用正则表达式抓取输出中的“tool”和“parameters”参数。
    • 对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。
    • 通过识别 LLM 返回的调用工具的字典,提取对应的值,传入相应的工具函数,将工具返回的结果以 observation 的角色返回给 LLM。对于不接受该角色的 LLM 接口,可改为回传给 user 角色。

此外,当模型判断需要调用工具函数时,即检测到返回的 json 里面 function_call 字段不为空,则执行异步函数调用,可通过判断返回的 functionCall 的名称来执行不同的函数并返回结果。

在提升可控性方面,有以下建议:

  1. 放弃 JSON mode,虽然模型能力提升能输出 JSON,但仍会出错,且不能保证 100%正确,而模型厂家对 Function Calling 有微调优化。
  2. 降低 System prompt 依赖,化繁为简,能在 Tools 里写的东西尽量写在里面。
  3. API Response 增强 Prompt,这一步的准确率很高,可增加给大模型的约束和提示。
  4. 尽量让模型做选择,而不是填空,减少 token 输出,提高速度和准确率。
  5. 利用 Tools 来做 Route,构建 Multi Agent,术业有专攻。
AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

本文采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析tool calling的输出,并将工具返回的内容再次嵌入LLM。[heading2]1、提示词注入阶段[content]INSTRUCTION为最后注入到系统提示中的字符串,他又包含了TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT三个部分。TOOL_EAXMPLE用于提示LLM如何理解tool以及如何使用tool。在编写TOOL_EAXMPLE时,请注意用一些无关紧要的工具作为示例,例如本文使用的将数字加一和数字减一的工具,从而避免LLM混淆真正可以使用的工具与示例工具。tools_instructions是由目前通用的工具字典转换成LLM可读的工具列表。实际使用LLM时,可以通过输入不同的工具来动态调整tools_instructions,让LLM得知目前可用的工具有哪些以及如何使用。REUTRN_FORMAT定义了调用API的格式。[heading2]2、工具结果回传阶段[content]利用正则表达式抓取输出中的"tool"和"parameters"参数。对于interpreter工具,使用了另一种正则表达式来提取LLM输出的代码,提高LLM使用interpreter工具的成功率。本文使用代码如下:通过识别LLM返回的调用工具的字典,提取出对应的值,再传入相应的工具函数,最后将工具返回的结果以observation的角色返回给LLM。对于一些不接受observation、tool、function角色的LLM接口,可以改为回传给user角色,例如:通过以上提示词工程,可以避免微调,让完全没有tool calling能力的LLM获得稳定的tool calling能力。

游戏实操| 利用LLM进行环境叙事和解谜——《Im Here2》

[title]游戏实操|利用LLM进行环境叙事和解谜——《Im Here2》[heading1]三、Demo实现[heading2]3.2提示词设计具体而言,当模型判断需要调用工具函数时,即检测到返回的json里面function_call字段不为空,则执行异步函数调用,这里采用回调的方式以获取函数返回的结果。通过判断返回的functionCall的名称来执行不同的函数,执行逻辑同时返回结果。1.对守卫者和指引者一类具有单一明确任务的代理来说,虽然不同代理负责不同的谜题如一般谜题和世界观谜题,但由于指令结构的存在保持着一定的兼容性,所以只要调试出一个可行的结构,进一步更换谜题和回答正确后提供的线索即可。在这里调试它们的指示预设更像是尝试使它们输出特定的内容,有点像:《完蛋!我被LLM包围了!》,感兴趣的可以试玩一下:[https://huggingface.co/spaces/LLMRiddles/LLMRiddles](https://huggingface.co/spaces/LLMRiddles/LLMRiddles)[https://modelscope.cn/studios/LLMRiddles/LLMRiddles/summary](https://modelscope.cn/studios/LLMRiddles/LLMRiddles/summary)这里举了两个有不同谜题的代理示例,可以试着一段段输入测试查看模型输出的结果,指令预设如下:守卫者1:【角色预设+谜题】

AI Agent产品经理血泪史(一):一年来我摸过的那些石头【Tools篇】

上面讲到了4种实现Function Calling的方式:Json Output:通过Prompt的方式让模型输出JSON格式内容优劣势:Prompt麻烦,输出不稳定,串业务成本高Json Mode:官方Josn Output,1106与Tools同期推出优劣势:JSON格式稳定,但实际上它与Tools的适用场景是不同的,JSON mode是为了输出JSON存在的,而Tools是为了Call API存在的Function Calling和Tools就不再赘述但是从可控的角度来说,还是会推荐Function Calling和Tools来实现。1、放弃JSON mode:随着模型能力提升,模型能够准确地输出JSON,但是它还是会出错,不能保证100%正确;模型厂家对Function Calling是有微调优化的,也有说法是专门的MOE专家,但是无从验证;2、降低System prompt依赖,化繁为简S yste m prompt里面写的东西太多了,你不能保证模型能很好地遵循它;能在Tools里面去写的东西,尽量写在Tools里面3、API Response增强Prompt:其实所有输入给模型的内容,都可以算作是Pormpt。同理,Tools调用的结果也就是API Response也会被返回给到模型。可以在这一步增加一些给大模型的约束和提示,这里的准确率非常高,毛估估95%以上。4、尽量让模型做选择,而不是填空把确定的答案做成选项给到模型,比如用Enum的方式。一方面减少token的输出,提高速度;另一方面,准确率高5、利用Tools来做Route,构建Multi Agent一个不行就上两,两个不行就上四。术业有专攻,Agent的世界也一样。

他の質問
function calling是什么
Function Calling 是一种在自然语言处理和人工智能模型中的技术和概念。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,使用前需要做好配置,如使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象,这是将 GPT 的能力与外部工具和 API 连接起来的新方法。例如,本地写函数执行 this.app.mysql.select,使操作更灵活。 对于 OpenAI 的 GPT 模型,Chat completions API 允许在请求中传递一系列函数描述,模型能据此生成函数参数并以 JSON 格式返回,可用于执行函数调用,函数调用的结果还能在后续请求中反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。 需要注意的是,模型生成的代码不一定都正确和安全,运行代码前要确保环境安全,最好在沙盒里。
2025-03-26
Function Calling 是什么
Function Calling 是一种在自然语言处理和人工智能领域中的技术和概念。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,使用前需要做好配置,如使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象,这是将 GPT 的能力与外部工具和 API 连接起来的新方法。例如,本地写函数执行 this.app.mysql.select,这样使得 prompt 的定制更为简单,AI 的输出更为可控。 在 OpenAI 的相关实践中,Chat completions API 允许在请求时附带一系列函数描述,模型可据此产生函数参数,API 以 JSON 格式返回参数用于执行函数调用,函数调用的结果还可反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。但需注意,模型生成的代码不一定都正确和安全,使用前要确保环境安全。
2025-03-14
实现一个简单的 function calling agents ,要求小白可以看懂
以下是一个关于实现简单的 function calling agents 的指导,以便小白能够理解: 实现原理: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions 和 REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,通过识别 LLM 返回的调用工具的字典提取对应值传入工具函数,将工具返回结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口可改为回传给 user 角色。 实现方式的比较与建议: 1. JSON Output:通过 Prompt 方式让模型输出 JSON 格式内容,但 Prompt 麻烦,输出不稳定,串业务成本高。 2. JSON Mode:官方 JSON Output,与 Tools 适用场景不同,JSON mode 为输出 JSON 存在,Tools 为 Call API 存在。 3. 从可控角度推荐 Function Calling 和 Tools 实现: 放弃 JSON mode,模型输出 JSON 仍可能出错,模型厂家对 Function Calling 有微调优化。 降低 System prompt 依赖,能在 Tools 里写的尽量写在里面。 API Response 增强 Prompt,准确率高。 尽量让模型做选择而非填空,减少 token 输出,提高速度和准确率。 利用 Tools 做 Route,构建 Multi Agent,术业有专攻。 此外,在初级菜鸟学习 Langchain 做简单 RAG 方面: 1. 没有用 Langchain 做 table 和 text 的 RAG: Table 表格:包括读入表格 markdown 格式嵌入 template 和直接使用 function call 两种方法。 Text 文字:包括文字相似度检索过程,涉及读入文字、清洗、切分、向量化、计算相似度等步骤。 2. 用 Langchain 做 table 和 text 的 RAG:包括运用 Agent 和 Chain 等方式。 3. 使用 Agent 把文本多种文档组合起来。 相关代码和示例可参考相应的链接。
2025-03-11
function calling 这是什么?
Function Calling 是一种在自然语言处理和人工智能模型中的技术。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,使用前需要做好配置,如使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象,这是将 GPT 的能力与外部工具和 API 连接起来的新方法。例如,本地写函数执行 this.app.mysql.select。 对于 OpenAI 的 GPT 模型,Chat completions API 允许在请求中传递一系列函数描述,使模型能够根据提供的模式生成函数参数,API 以 JSON 格式返回生成的函数参数,可用于执行函数调用,函数调用的输出还可在后续请求中反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。 需要注意的是,模型生成的代码不一定都是正确和安全的,在运行代码前要确保环境安全,最好在沙盒中进行。
2025-03-06
Function Calling
Function Calling 是一种将 AI 模型(如 ChatGPT、谷歌 Gemini 等)的能力与外部工具和 API 连接起来的方法。 对于 ChatGPT: 为让其返回符合要求的 JSON 格式,prompt 的定制重要且复杂。 OpenAI 发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象。 好处是减少 SQL 注入风险,可本地写函数执行查询,也可让函数改为 SQL 查询,使 GPT 与函数调用结合,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控。 对于谷歌 Gemini: 在金融业务用例中,可用于搜索欧元兑美元的当前汇率,使用前需做好配置,如使用 Gemini 1.5 Flash 模型。 函数调用带来多个优势,包括简化用户体验、减少错误发生可能性、为更高级自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,重新定义了人与技术的互动方式。
2025-03-05
Function Calling 是什么
Function Calling 是一种将模型的能力与外部工具和 API 连接起来的方法。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,需要先做好配置,可使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。 使用 Function Calling 有好处,如不需要让 ChatGPT 生成 SQL,减少 SQL 注入的风险,本地写函数执行查询数据更为安全。但也有局限性,事先定义函数查询不如 SQL 查询灵活,也可让函数改为 SQL 查询以增加灵活性。 对于 OpenAI 的 GPT 模型,Chat completions API 允许在请求时附带一系列函数描述,使模型能按照提供的格式产生函数参数,API 以 JSON 格式返回参数用于执行函数调用,函数调用的结果还可反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。同时要注意模型写的代码不一定都正确和安全,运行前要确保环境安全。
2025-02-23
什么是Dify
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 拥有全面的 RAG Pipeline 用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。无论是创业团队构建 MVP、企业集成 LLM 增强现有应用能力,还是技术爱好者探索 LLM 潜力,Dify 都提供相应支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2025-04-13
哪里可以搜到dify的相关学习资料
以下是一些可以搜到 Dify 相关学习资料的途径: 1. 您可以通过以下链接获取相关学习资料:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令通常在宝塔面板的终端安装,若想了解命令的含义,可直接询问 AI 。 2. 微信文章: ,该文章介绍了如何在几分钟内使用 Dify 平台快速定制网站的 AI 智能客服,即使是非技术人员也能操作。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-10
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
dify
Dify 是一个开源的大模型应用开发平台: 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据实际需求选择,如追求高准确度可选高质量模式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新增加新内容。 平台特点: 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,提供功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-04-01
dify教程
以下是关于 Dify 的教程: Differential Diffusion 教程: 技术适用场景:特别适用于需要保持图像整体一致性和自然感的场景。 软填充技术:用于平滑填补图像空白或损坏部分,同时细微调整周围区域,确保新填充内容与原始图像无缝融合。 强度扇:一种可视化不同编辑强度效果的工具,帮助用户通过可视化方式理解不同编辑强度的效果。 无需训练或微调:操作仅在推理阶段进行,不需要对模型进行额外训练或微调。 与现有扩散模型兼容:可集成到任何现有的扩散模型中,增强编辑和生成能力,适用于 Stable Diffusion XL、Kandinsky 和 DeepFloyd IF 等不同的扩散模型。 主要功能特点: 精细的编辑控制:通过引入变化地图,可对图像每个像素或区域指定不同变化程度,支持离散和连续编辑。 文本驱动的图像修改:通过文本提示指导图像修改方向。 软填充技术:在填补图像空白或修复部分时,能细微调整周围区域确保无缝融合。 Dify 接入企业微信教程: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-03-29
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 推荐使用方式:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-03-28
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
AGENT
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。 2. 关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆信息。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息。 以下是一些与智能体相关的资源目录: 关于 2025AGENT 智能体全球创作大赛: 1. 报名:通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可,且参赛完全免费。 2. 提交作品:在本网站直接提交,若采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可获得额外会员奖励。 3. 奖项设置:设有金、银、铜奖和多个单项奖,获奖后将获得组委会颁发的奖金和证书,需保证联系方式准确以便联系。 4. 知识产权归属:参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-04-12
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13