Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度

Answer

作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面:

  1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。
  2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。
  3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。
  4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。
  5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。
  6. 数据分析能力:掌握相关算法知识,提升数据分析能力。

同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容:

  • AI 背景知识:
    • 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  • 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等基本概念。
    • 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。
  • 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:了解其基本概念。
  • 评估和调优:
    • 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学会使用网格搜索等技术优化模型参数。
  • 神经网络基础:
    • 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。
    • 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
Content generated by AI large model, please carefully verify (powered by aily)

References

?AIPM 技能树?

传统的软件/互联网PM在面对AI产品时,需要具备更专业的技术知识和独特的产品思维,因此AI PM作为一个更加专业化的PM角色逐渐形成。AI产品通常涉及复杂的算法、大数据处理等技术,同时又需要考虑用户体验、商业模式等因素。这就要求PM具备跨学科的知识背景,能够在技术和业务之间进行有效沟通和决策。1.理解产品核心技术了解基本的机器学习算法原理,有助于PM更好地理解AI产品的核心技术,从而做出更合理的产品决策。2.与技术团队有效沟通掌握一定的算法知识,可以帮助PM与开发团队进行更有效的沟通,减少信息不对称带来的误解。3.评估技术可行性在产品规划阶段,PM需要评估某些功能的技术可行性。了解算法知识可以帮助PM做出更准确的判断。4.把握产品发展方向AI技术发展迅速,了解算法前沿可以帮助PM更好地把握产品的未来发展方向。5.提升产品竞争力了解算法可以帮助PM发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力。6.数据分析能力很多AI算法都涉及到数据处理和分析,掌握相关知识可以提升PM的数据分析能力。

写给不会代码的你:20分钟上手 Python + AI

[title]写给不会代码的你:20分钟上手Python + AI[heading1][heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

写给不会代码的你:20分钟上手 Python + AI

[title]写给不会代码的你:20分钟上手Python + AI[heading1]完成了一个AI应用[heading2]之后呢?[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
minimax的大模型算法热点
以下是关于 MiniMax 的大模型算法热点的相关内容: 1. MiniMax 有两个适合特定任务的大模型:MiniMaxText01 支持 400 万 token 的上下文,能应对超长文章;T2A v2(speech01turbo)拥有最好的声音复刻效果。可以通过其开放平台(https://platform.minimaxi.com/login )进行注册登录及实名认证。首次注册会赠送 15 元,API 消耗会消耗余额,生成一条 3 分钟的语音,文本模型消耗 1 分钱,语音模型消耗 5 毛钱,克隆音色有额外费用,现优惠 9.9 元。接着创建 API Key 并保存好,以及 groupid。还可以克隆声音,相关链接为 https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning ,有创建 voice id、上传复刻音频及音频 prompt、试听文本等操作,勾选用户协议点击“克隆”选项一段时间后完成克隆,使用填写的 voice id 生成声音。 2. MiniMax 推出了 MoE 架构的新模型,其“星野”是目前国内最成功的 AI 陪聊 APP。 3. MiniMax 近日发布新模型 MiniMax01,采用线性注意力机制和 MoE 架构,显著提升上下文处理能力,支持超长上下文(400 万 Token),在多项学术基准上表现优异,超越许多国际顶尖模型。其开源旨在促进长上下文研究和应用,加速 Agent 时代的到来,通过精细架构设计和训练策略,在处理长输入时实现接近线性的计算效率。
2025-03-28
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
ai算法该从哪里开始学习
学习 AI 算法可以从以下几个方面入手: 1. 神经网络和深度学习方面: 了解麦卡洛克皮兹模型,感知机的学习机制,如罗森布拉特受唐纳德·赫布基础性工作的启发想出的让人工神经元学习的办法,包括赫布法则。 熟悉感知机学习算法的具体步骤,如从随机权重和训练集开始,根据输出值与实例的差异调整权重,直到不再出错。 2. Python 与 AI 基础方面: 掌握 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其关系,以及 AI 的发展历程和重要里程碑。 巩固数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 学习算法和模型,包括监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 了解模型的评估和调优方法,如性能评估(包括交叉验证、精确度、召回率等)、模型调优(如使用网格搜索等技术优化模型参数)。 熟悉神经网络基础,如网络结构(包括前馈网络、卷积神经网络、循环神经网络)、激活函数(如 ReLU、Sigmoid、Tanh)。 3. 强化学习方面: 了解在人工智能发展中,利用新算法解决挑战性问题的思路,如在某些领域找到适合的模拟任务环境进行训练和学习,不依赖人类专家先验。 以 AlphaZero 为例,理解其模型公式,包括定义神经网络、网络权重、棋盘状态表示、网络输出等。
2025-03-15
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
大神解读大模型底层
大模型的底层原理主要包括以下几个方面: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从给定的提示词“how”开始,通过计算推理依次输出“are”“you”等,直到计算出下一个词是“”时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。以 GPT3 为例,训练它使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。预训练需要花费大量时间和算力资源,且在没有外部帮助的情况下,大模型所知道的知识信息是不完备和滞后的。 3. 转换器模型(Transformer):Transformer 是一种处理文本内容的经典模型架构,虽然其具体细节不清楚不影响使用大模型,但感兴趣的可以通过相关链接进一步了解。 4. 参数规模:依靠概率计算逐字接龙的方法看似难以生成高质量回答,但随着参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,“涌现”出惊人的“智能”。这种“涌现”现象在人类的进化和个体学习成长历程中也存在。
2025-03-24
教我工作流的底层逻辑跟如何入门学习工作流
工作流的底层逻辑及入门学习方法如下: 工作流通常由多个节点构成,节点是其基本单元,本质上是包含输入和输出的函数。常见的节点类型包括: 1. LLM(大语言模型):使用输入参数和提示词生成处理结果。 2. Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 3. Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 4. Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 5. Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 6. Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 以下是一些入门学习工作流的示例和资源: 1. 对于生成绿幕素材和绿幕素材抠图的工作流,您可以下载工作流文件拖入 ComfyUI 中自动加载,然后对照相关说明进行学习。工作流链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 对于 Glif 图像流制作冰淇淋甜品地标,您可以按照以下步骤学习: 1 分钟交作业:点击网址 https://glif.app/@jianStuart/glifs/cly85fy2i000cqe87zcu72i5l ,选一张主体区分度高且主体为地标的图,上传图片并点击相应按钮,多点几次选一张满意的即可。 5 分钟学习制作:点击顶上的“build”按钮,点击“+”加号,选择“img input”,再点下面的“+”加号,选“image generator”,把提示词放进节点,打开“advanced controls”,修改参数,勾选“Enable input image”并改参数。 3. 对于 Coze 平台的工作流,官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,建议跟着实操一遍,如: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent
2025-03-24
我想学习ai视频ai生图的相关技能,并且我不想速成,我想了解其中的底层原理以便可以更好的控制生成的内容,我应该如何学习
以下是关于学习 AI 视频和生图相关技能的一些建议: 一、基础概念 1. 模型 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个才能开始。 Lora:低阶自适应模型,可视为 Checkpoint 的小插件,用于精细控制面部、材质、物品等细节。 VAE:编码器,功能类似于滤镜,可调整生图的饱和度,一般选择 840000 这个。 2. 提示词 Prompt 提示词:想要 AI 生成的内容,需要花费功夫学习,可从照抄别人开始。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,同样需要学习,可从照抄开始。 3. 其他概念 ControlNet:控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 ADetailer:面部修复插件,用于治愈脸部崩坏,是高阶技能。 二、参数设置 1. 迭代步数:AI 调整图片内容的次数。步数越多,调整越精密,出图效果理论上更好,但耗时越长,且并非越多越好。 2. 尺寸:图片生成的尺寸大小,需适中选择,太小生成内容有限,太大 AI 可能放飞自我。 3. 生成批次和每批数量:决定重复生成图的批次和每批次同时生成的图片数量。 4. 提示词引导系数:指图像与 prompt 的匹配程度,数字增大图像更接近提示,但过高会使图像质量下降。 5. 随机数种子:固定后可对图片进行“控制变量”操作,首次生成图时无需关注。 6. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 在学习过程中,您可以先从熟悉基础模型、提示词和常见参数设置入手,通过实践和参考他人的经验不断积累知识,逐步掌握更高级的技能和工具。
2025-03-24
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07
不同能力的AI从业者需要掌握什么AI能力
不同能力的 AI 从业者所需掌握的 AI 能力如下: AI 技术与产品创新者: 具备扎实的技术背景,包括编程、算法工程、AI 应用开发、后端开发等,许多是行业内的技术专家或初学者。 拥有产品开发与管理经验,尤其在互联网和 AI 产品开发方面,具备丰富的项目管理与执行能力。 熟悉多元化的应用场景,包括 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等。 AI 爱好者与学习者: 处于 AI 技术的初学阶段,渴望通过学习提升技能,并将 AI 技术应用到实际工作和生活中。 广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等,展示出对 AI 工具的强烈兴趣。 活跃在各种 AI 学习社群和线上线下的活动中,热衷于共学与交流,进一步提升自己的技能与认知。 AI 内容创作与营销者: 具有内容创作经验,如自媒体运营者、视频博主、内容创作者,具备强大的文案策划、视频剪辑、图文制作等创意能力。 熟练掌握营销策划与品牌运营,能够将 AI 技术与商业化需求结合,提供完整的解决方案。 拥有丰富的活动策划和运营经验,涉及线下工作坊、社群活动、比赛等,展示了较强的资源整合和组织协调能力。 AI PM(产品经理): 理解产品核心技术,了解基本的机器学习算法原理,以便做出更合理的产品决策。 掌握一定的算法知识,与技术团队进行更有效的沟通,减少信息不对称带来的误解。 在产品规划阶段,能够评估某些功能的技术可行性。 把握 AI 技术发展迅速的趋势,更好地把握产品的未来发展方向。 发现产品的独特优势,提出创新的产品特性,提升产品的竞争力。 提升数据分析能力,因为很多 AI 算法都涉及到数据处理和分析。
2025-04-09
大模型应用开发岗位需要掌握什么
大模型应用开发岗位通常需要掌握以下内容: 1. 编程思维和 Python 基础。 2. 认识大模型 Embedding 技术,包括理论知识和代码实战。 3. 在构建模型应用方面: 根据项目需求选择合适的开发框架。 了解业务背后的深层次需求,设定流程环节以确保模型能解决实际问题。 在每个环节精心设计提示词,引导模型提供准确有用的回复。 确保应用在提供服务时遵守安全和伦理标准。 通过不断测试和迭代优化模型性能和用户体验。 成功部署应用后持续维护和更新以适应需求变化。 4. 提示词的精细设计和调试,因为其直接影响模型的输出质量和应用效果。 5. 对于智能体构建,了解动态推理智能体情感设定,以制作更有情商的智能体。
2025-04-08
你是一名DEEPSEEK专家,请用大白话交给小白掌握deepseek的使用,举例说明
DeepSeek 的使用对于小白来说可能有点复杂,但我尽量用大白话给您解释清楚。 比如说,您想让 DeepSeek 帮您生成“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”这样的内容。 DeepSeek 会这样来处理: 1. 先回顾玄武门之变的历史背景,比如这场政变发生在 626 年,李世民杀了兄弟,逼父亲退位等。 2. 思考李世民当晚的心理,可能有释然、愧疚、恐惧、自责等多种复杂情绪,还要考虑他是被迫还是早有预谋。 3. 要让生成的独白不仅符合历史事实,还要有文学性,体现人性的复杂。比如要平衡他的野心与自责,对未来的抱负与对过去的悔恨。 4. 考虑当时的文化背景,像儒家思想对孝悌的重视,李世民的行为违背了这些伦理,他可能会内心挣扎,还可能为自己的行为找正当理由。 5. 按照您的需求,给独白加上一些文学修辞,像比喻、对仗、意象等,增强画面感。 另外,DeepSeek 还有个很厉害的地方,就是它能在独白文本中“自作主张”地加入括号里的场景描述,让整个输出更有画面感。比如“(夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页)”、“(墨迹在‘弑’字上晕开一团)”、“(忽然扔笔,抓起铜镜)”这些句子,很难相信是 AI 写的。 总之,使用 DeepSeek 时要考虑很多方面的因素,它能根据您的提示词和需求,生成很精彩的内容。
2025-03-13
请罗列出你掌握的OCR技术 以【方式名称+曾使用过自认最熟练的操作】的格式填写
以下是我掌握的 OCR 技术: OCR 识别:对图片进行 OCR 识别,获取图片中的文本信息,并对识别结果进行调整和优化。
2025-03-10
如何用AI快速掌握一个领域
以下是用 AI 快速掌握一个领域的方法: 1. 掌握最少必要知识,尽快开始并度过这个过程。您可以参考相关学习地图,例如。 2. 结合 ChatGPT 等工具,不懂的地方随时提问。 3. 对于新手学习 AI: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,包括主要分支及它们之间的联系,同时浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,例如图像、音乐、视频等,并掌握提示词技巧。 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-02-28
我做一个小白,请帮我规划一个学习路径,让我快速掌握AI工具使用
以下是为您规划的快速掌握 AI 工具使用的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,学习生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有以下几点建议: 1. 多看教程,多实践:通过学习教程和反复实践,可以快速掌握 AI 工具的使用方法。 2. 积极参与社群交流:加入相关社群,向有经验的朋友请教,可以获得很多宝贵的经验和建议。 3. 保持好奇心和探索精神:AI 技术发展迅速,不断学习和探索新技术,可以让您在这个领域中保持竞争力。 希望以上学习路径和建议对您有所帮助!
2025-02-27