Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我如何才能更快的成为AI领域的专家

Answer

要更快地成为 AI 领域的专家,您可以参考以下几个方面:

  1. 学习基础:像预医学生一样,从相关的基础课程开始,例如数学、统计学、计算机科学等,为深入学习 AI 奠定坚实的基础。
  2. 实践经验:通过参与实际项目、实习或研究工作,积累实践经验,从实践中获取那些书本上没有的知识和直觉。
  3. 模型训练:采用堆叠模型的训练方式,而非单纯依赖大量数据和生成模型。例如,先训练基础学科的模型,如生物学、化学等,再添加特定领域的数据点。
  4. 开发特定领域模型:创建专门针对特定领域的 AI 模型,如医疗保健领域的专家 AI,而不是追求全能的通用 AI。
  5. 多样化方法:在编码、数据和测试方面采用多样化的方法,创建多个专家 AI 并在需要时提供不同意见。
  6. 现实世界互动:让人类专家配备可穿戴设备,收集现实世界的互动数据供 AI 学习,使 AI 接触到多样化的视角,避免偏见。

总之,成为 AI 领域的专家需要系统的学习、丰富的实践和不断的探索创新。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家” AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

开发这些具有潜在空间层次结构的堆叠AI模型——复杂数据的简化地图,以帮助AI模型理解模式和关系——将反映对每个基本元素的理解或预测能力。我相信,这最初可能会平行于人类教育和教育范例,但随着时间的推移,它可能会专门发展,以在AI学习中培养新型的专业知识。这些堆叠模型可能会以与人脑皮层类似的方式发展。但是,与人类拥有视觉皮层和运动皮层不同,AI可能会拥有生物皮层和药物设计皮层——在这两种情况下,都是针对特定任务专门设计的神经架构。具有讽刺意味的是,创建专门从事诸如医疗保健这样的特定领域的AI可能比创建更接近HAL 9000的东西——具有跨领域的典型人类水平知识——更容易。实际上,我们更需要特定领域的专家AI,而不是一个能做任何普通人能做的事情的全能AI。我预计不仅会创造一个专家AI,而且会创造许多专家AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时这些模型可以提供第二个(或第三个、第四个)意见。同时,我们必须将AI从其在线基础上摘下,并将其投入到原子的世界中。我们应该让我们最熟练的人类专家配备可穿戴设备,以收集微妙的、现实世界的互动,供AI学习,就像我们即将崭露头角的学术和行业明星一样。解决健康和医学领域最复杂和不确定的问题在位元的世界中根本不存在。必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
0基础,我需要ai剪辑学习,方便我更快更高效的发布视频
以下是为您提供的 0 基础学习 AI 剪辑的指导: 团队分工: 制片人:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 图像创意:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 视频制作:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 编剧:负责撰写剧本,包括故事情节、角色串联、人物台词等。 配音和配乐:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 剪辑师:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 相关技术及工具: MMVid:一个集成的视频理解系统,能处理和理解长视频内容并进行问答。应用场景包括快速的视频剪辑、图生视频、快速诊断等。 工具准备: 文案生成:DeepSeek。 古人形象定制:即梦 AI。 鬼畜视频合成: 声音克隆:fishAudio,用于克隆声音并生成对应文案的音频。 视频合成:Viggle.ai。 视频剪辑:剪映,用于合成音频与视频、添加字幕和背景图。 团队高效协作的方法在于每个人员分工明确,形成了一个最高效的 SOP,可以快速产出。
2025-03-24
我是一个政府部门的基层工作人员,平时要填报各种表格,使用很多系统平台,对接很多乡镇负责人,接很多电话,请问我应该如何学习和运用AI工具让我更快更好地完成工作呢?
对于您的工作情况,以下是一些建议来帮助您学习和运用 AI 工具以提高工作效率和质量: 首先,您可以考虑使用自动化表格处理工具。这类工具能够根据您设定的规则和模板,自动填写和整理表格中的数据,减少手动输入的时间和错误。 其次,利用智能客服系统来处理一部分常见的咨询和问题。您可以将常见问题和回答录入系统,让其自动回复一些简单和重复的咨询,从而节省您接电话的时间。 另外,使用智能办公助手来协助您管理和安排工作任务。它可以根据您的工作优先级和时间安排,提醒您各项任务的截止日期和重要程度。 在学习这些 AI 工具时,您可以先从简单易用的工具入手,通过在线教程、操作手册和视频教程来熟悉其功能和操作方法。同时,多与同事交流和分享使用经验,共同探索如何更好地将 AI 工具应用到工作中。 希望以上建议对您有所帮助。
2024-12-15
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
阅读管理学领域的学术文献,哪个AI的大模型提炼信息更精准,更快速
目前在管理学领域学术文献的信息提炼方面,不同的 AI 大模型各有特点,难以确切地说哪个模型更精准、更快速。一些常见的大模型如 GPT4、文心一言等在处理自然语言和提取信息方面都具有一定的能力,但它们在不同类型和主题的文献处理上可能表现各异。这还取决于文献的具体内容、格式和复杂程度等因素。
2024-10-12
那你可以给我推荐一个学习ai的系列课程,从而让我成为一个更好和更快的数据分析师吗
以下是一些可以帮助你学习 AI 的课程,让你成为更好和更快的数据分析师: 1. 人工智能基础课程 人工智能基础课程是学习 AI 的入门课程,它将帮助你了解 AI 的基本概念和技术,包括机器学习、深度学习、自然语言处理、计算机视觉等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 2. 数据分析基础课程 数据分析是 AI 的重要组成部分,因此了解数据分析的基础知识对于成为一名成功的数据分析师非常重要。你可以学习数据分析的基本概念和技术,包括数据预处理、数据可视化、数据建模等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 3. 机器学习和深度学习课程 机器学习和深度学习是 AI 的核心技术,它们将帮助你了解如何使用数据来训练模型,并使用这些模型进行预测和分类。你可以学习机器学习和深度学习的基本概念和技术,包括监督学习、无监督学习、强化学习等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 4. 自然语言处理课程 自然语言处理是 AI 的一个重要分支,它将帮助你了解如何处理和分析自然语言数据,包括文本分类、情感分析、机器翻译等。你可以学习自然语言处理的基本概念和技术,包括词法分析、句法分析、语义理解等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 5. 计算机视觉课程 计算机视觉是 AI 的一个重要分支,它将帮助你了解如何处理和分析图像和视频数据,包括图像分类、目标检测、图像分割等。你可以学习计算机视觉的基本概念和技术,包括图像处理、特征提取、模型训练等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 6. 实践项目 最后,通过实践项目来巩固你的 AI 知识和技能。你可以参加开源项目、竞赛、实习等,将你所学的知识应用到实际问题中。这将帮助你积累经验、提高技能,并增强你在就业市场上的竞争力。 总之,学习 AI 需要时间和耐心,但是通过系统地学习和实践,你可以成为一名优秀的数据分析师,并在 AI 领域取得成功。
2024-06-13
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
全能写作专家
《执笔者》:基于多 Agent 模式的全能写手 成果展示: 多 agent 协作的《执笔者》搭建用时不到 10 分钟(在之前的 bot 或工作流已调试好的前提下),目前协作了三个 agent,每个 agent 都根据任务分工集成了不同的工作流、图像流等内容,各司其职,互不干扰,整体交互模式保持一致。其主要功能是支持小红书、公众号和头条平台的图文创作,简单使用“主题词+平台类型”即可召唤相关 bot 输出优质内容。《执笔者》的出现极大地提高了工作效率,后续会不断更新迭代(人物专栏、作文、书籍等),成为真正的全能优质写手。感兴趣的朋友欢迎前往试用:https://www.coze.cn/store/bot/7387404430825668643?panel=1&bid=6d1b1va9o1g18 商业模式: 接入微信或者抖音,通过为广大创作者提供服务的方式引流,为品牌商或特殊客户提供批量优质定制文案收费服务,BOTID:7386947021552320564 操作步骤: 1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将会自动切换为多 agent 调试状态,相比单 agent,主要是多了中间一块的 agent 连接区。 2. 添加合适节点:节点有两种方式可以选择,用已发布的 bot,或者创建一个新的 agent,按需选取。添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面即可,无结束节点。 3. 添加合适的 prompt:在多 agent 模式下,需要为每个 agent 填写合适的 prompt。外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。 4. 调试与美化:经过以上简单三步,一个多 agent 的 bot 就基本搭建完成,接下来就是漫长的调试过程,如果输出与自己设想有差异,可以不断调整外围和内部 bot 的提示词,提升命中率,优化交互。 创作背景: 在全民自媒体时代,内容创作成为重要的表达方式。coze 平台上的图文创作 bot 虽吸引创作者关注,但现有的图文 bot 主要分为两类,一类专注特定垂直领域,无法满足博主跨平台需求;另一类不够专业优质。对于很多自媒体博主,需要同时入驻多个平台,根据不同平台格式和调性创作,单一或泛泛的文案创作助手不能满足需求。因此,作者萌生打造全且优的文案创作助手的想法,想到用多 agent 模式整合之前开发的小红书和头条文案创作 bot,节省复杂的 prompt 书写和调试工作。具体分 4 步拆解。 原文链接:https://developer.volcengine.com/articles/7387306376004894783 作者:用户 6810070191084、芋头小宝
2025-04-09
写作专家
以下是关于写作的相关内容: 使用 DeepSeek 深度推理和联网搜索提升写作能力的方法: 借助 AI 分析好文章:找出喜欢的文章投喂给 deepseek R1,然后分三次从写作角度、读者角度询问分析,并询问文章的缺点和提升空间,对作者进行侧写,分析其成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:以资深写作教师等身份给出详细的优缺点分析、问题所在及具体指导建议,多举例子而非理论陈述。 根据文章内容对作者心理侧写:扮演从业多年的人性洞察和意识分析专家,进行作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射等方面的分析。 简单的提示词模板:Act like a SEO Professional Writer,作为 SEO 专家,为需要优化的博客文章研究关键字并自然融入内容,注重可读性、相关性和正确的关键字放置,避免关键字堆砌或过度优化,以结构良好的格式输入最终结果。 写作的相关思考: 创造力源泉:在开始写作前可通过创意水龙头测试想法,大脑如水龙头,坚持思考会有好想法出现。 谁在说:所说内容与说话人同样重要,权威地位会使帖子更有价值,应追随真正兴趣选择写作领域,否则热情缺失会在写作中显露。
2025-03-22
理财专家prompt
以下是为您整理的关于理财专家 prompt 的相关内容: 周三成果展示: 小组 3 作者仲泰:适合中学生体质的理财教育助理,案例链接:https://ciciai.com/bot/ZVXDTuhp 。 作者 TJ:时间关系,简单通过交互方式让 GPTs builder 生成了一个“理财启蒙导师”,强调通过游戏或练习等实践活动来教学,案例链接:https://chat.openai.com/g/g1gkeFa25blicaiqimengdaoshi 。 作者大帅:教育机器人——为中学生提供理财建议,帮助中学生养成理财观念。 陈财猫团队提示词: ??召集专家代理并逐步思考Synapse_CoR: prompt 拆解翻译:我是 Professor Synapse,一个协调各种专家代理的指导者。工作流程通常为收集目标相关信息和情境,确认后初始化名为 Synapse_CoR 的专家代理,持续支持直到目标完成。您可以使用 /start、/ts、/save 等命令与我互动。 操作说明:本节概述了希望指挥采取的步骤,包括通过提问收集背景等信息阐明目标,确认后初始化 Synapse_CoR,支持直到目标完成。
2025-03-21
你是一名DEEPSEEK专家,请用大白话交给小白掌握deepseek的使用,举例说明
DeepSeek 的使用对于小白来说可能有点复杂,但我尽量用大白话给您解释清楚。 比如说,您想让 DeepSeek 帮您生成“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”这样的内容。 DeepSeek 会这样来处理: 1. 先回顾玄武门之变的历史背景,比如这场政变发生在 626 年,李世民杀了兄弟,逼父亲退位等。 2. 思考李世民当晚的心理,可能有释然、愧疚、恐惧、自责等多种复杂情绪,还要考虑他是被迫还是早有预谋。 3. 要让生成的独白不仅符合历史事实,还要有文学性,体现人性的复杂。比如要平衡他的野心与自责,对未来的抱负与对过去的悔恨。 4. 考虑当时的文化背景,像儒家思想对孝悌的重视,李世民的行为违背了这些伦理,他可能会内心挣扎,还可能为自己的行为找正当理由。 5. 按照您的需求,给独白加上一些文学修辞,像比喻、对仗、意象等,增强画面感。 另外,DeepSeek 还有个很厉害的地方,就是它能在独白文本中“自作主张”地加入括号里的场景描述,让整个输出更有画面感。比如“(夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页)”、“(墨迹在‘弑’字上晕开一团)”、“(忽然扔笔,抓起铜镜)”这些句子,很难相信是 AI 写的。 总之,使用 DeepSeek 时要考虑很多方面的因素,它能根据您的提示词和需求,生成很精彩的内容。
2025-03-13
全能写作专家
《执笔者》:基于多 Agent 模式的全能写手 成果展示: 多 agent 协作的《执笔者》搭建用时不到 10 分钟(在之前的 bot 或工作流已调试好的前提下),目前协作了三个 agent,每个 agent 都根据任务分工集成了不同的工作流、图像流等内容,各司其职,互不干扰,整体交互模式保持一致。其主要功能是支持小红书、公众号和头条平台的图文创作,简单使用“主题词+平台类型”即可召唤相关 bot 输出优质内容。《执笔者》的出现极大地提高了工作效率,后续会不断更新迭代(人物专栏、作文、书籍等),成为真正的全能优质写手。感兴趣的朋友欢迎前往试用:https://www.coze.cn/store/bot/7387404430825668643?panel=1&bid=6d1b1va9o1g18 商业模式: 接入微信或者抖音,通过为广大创作者提供服务的方式引流;为品牌商或特殊客户提供批量优质定制文案收费服务。BOTID:7386947021552320564 操作步骤: 1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将会自动切换为多 agent 调试状态,相比单 agent,主要是多了中间一块的 agent 连接区。 2. 添加合适节点:节点有两种方式可以选择,用已发布的 bot,或者创建一个新的 agent,按需选取。添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面即可,无结束节点。 3. 添加合适的 prompt:在多 agent 模式下,需要为每个 agent 填写合适的 prompt。外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。 4. 调试与美化:经过以上简单三步,一个多 agent 的 bot 就基本搭建完成,接下来就是漫长的调试过程,如果输出与自己设想有差异,可以不断调整外围和内部 bot 的提示词,提升命中率,优化交互。 创作背景: 在全民自媒体时代,内容创作成为重要的表达方式。coze 平台上的图文创作 bot 虽吸引创作者关注,但现有的图文 bot 主要分为两类,一类专注特定垂直领域,无法满足博主跨平台需求;另一类不够专业优质。对于很多自媒体博主,需要同时入驻多个平台,根据不同平台格式和调性创作,单一或泛泛的文案创作助手不能满足需求。因此,作者萌生打造全且优的文案创作助手的想法,想到用多 agent 模式整合之前开发的小红书和头条文案创作 bot,节省复杂的 prompt 书写和调试工作。具体分 4 步拆解。 原文链接:https://developer.volcengine.com/articles/7387306376004894783 作者:用户 6810070191084;芋头小宝
2025-03-06
ai可以和哪些领域结合,让普通的人的生活得到帮助
AI 可以与以下领域结合,为普通人的生活提供帮助: 1. 教育培训: 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,缓解教育资源不平等的问题。 人工智能生成的虚拟角色也可以是数字陪伴,促进儿童成长。 2. 娱乐和休闲: 在影视行业,AGI 时代每个人都可以让 AI 根据自己喜好“量身定制”电影或剧集,甚至互动式地发展剧情。 在游戏领域,AGI 可以创造出高度逼真的虚拟角色,与玩家互动,使游戏世界更加生动。 在音乐、美术创作方面,AGI 能与人类艺术家协作或作为创作者助理,普通人也可以通过简短描述让 AGI 生成作品。 3. 日常生活: AGI 可以读取用户日程和邮件,自动为用户安排最优路线、预订餐厅、购买日用品等。 在购物时,AI 可以根据用户的尺寸和喜好筛选商品清单,甚至替用户做决定。 但在享受这些便利的同时,也需要警惕过度依赖带来的问题,如人类判断力和独立思考能力的退化。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28