Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你认为目前最好用的大模型有哪些?

Answer

目前最好用的大模型包括:

  1. OpenAI 的 GPT-4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,如文本生成、理解、翻译及各种专业和创意写作任务,能通过大量数据学习理解和生成人类语言,处理复杂问题和理解上下文能力出色。
  2. Anthropic 公司的 Claude 3。
  3. 谷歌的 Gemini。
  4. 百度的文心一言。
  5. 阿里巴巴的通义大模型。

大型模型主要分为两类:

  1. 大型语言模型:专注于处理和生成文本信息。
  2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。

大型多模态模型与大型语言模型的不同点:

  1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。
  2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。
  3. 数据需求不同:大型语言模型依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。

此外,如果想了解国内的大模型效果,可以参考第三方基准评测报告:2023 年度中文大模型基准测评报告.pdf 。需注意,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:目前最火最好用的的大语言模型是哪个

[OpenAI](https://openai.com/)的GPT-4是其中一个最先进和广泛使用的大型语言模型。它在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。GPT-4通过大量数据的学习,能够理解和生成人类语言,展示了在处理复杂问题和理解上下文方面的深度能力。除了OpenAI的GPT系列,还有其他一些重要的大型语言模型,如Anthropic公司[Claude 3](https://www.anthropic.com/news/claude-3-family)、谷歌的Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。如果想了解国内的大模型效果,可以参考第三方基准评测报告:[2023年度中文大模型基准测评报告.pdf](https://waytoagi.feishu.cn/wiki/ANF7wRcJPixR00kWJINcoP1GnGf)内容由AI大模型生成,请仔细甄别。类似问题:最强大语言模型是哪个?

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

十七问解读生成式人工智能

大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,这类模型能够处理包括文本、图片、音频等多种类型的信息。[heading1]问题八、大型多模态模型与大型语言模型有何不同?[content]1.二者处理的信息类型不同。大型语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。而大型多模态模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,这使得它们能够在更多样化的任务中应用。2.应用场景也有所不同。大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。而大型多模态模型由于能够处理多种信息类型,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。3.在数据需求方面也有所不同。大型语言模型主要依赖于大量的文本数据进行训练,而大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。[heading1]问题九、有了大模型,是不是还有小模型?[content]当我们谈论所谓的“小模型”时,实际上是在相对地比较。与那些拥有海量参数和训练数据的大型模型相比,这些模型的规模显得更小一些。因此,在日常交流中,我们习惯将它们称作“小模型”。但如果要更精确地描述,这些模型其实是被设计来完成特定任务的,比如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫?、狗?)。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
最好的制作ppt的大模型是哪个
目前在制作 PPT 方面,没有绝对的“最好”的大模型。例如,Claude 3.7 在将 PDF 转换为 HTML 方面效果较好,但国内用户使用不太方便,可改用 DeepSeekR1 实现。某上市公司使用某互联网大厂研发的千亿 AI 大模型产品声称能 3 分钟制作 PPT,但接入公司系统时出现“一连接就死机”的情况。同时需要注意的是,过去几个月内国内的 AI 大模型在某些方面大同小异,且大部分远未达到可商用化程度。
2025-04-13
画图那个ai最好
目前在 AI 绘画领域,没有绝对最好的工具,不同的工具各有其特点和优势。以下为您介绍一些常见的 AI 绘画工具: Stable Diffusion:有多种相关的插件,如脸部修复插件 After Detailer、UI 界面美化插件 Kitchen、高宽比锁定插件 Aspect Ratio、提示词自动翻译插件 promptallinone、最强控制插件 ControlNet 等,可满足不同的需求。 Photoshop 2023 Beta 爱国版:在某些方面表现出色。 即梦 3.0:在中文场景下有较好的表现,不仅提升了大字的准确性、设计感和丰富度,还大幅改善了小字的稳定性问题。相比即梦 2.1 和 GPT4o 在中文场景中的表现,即梦 3.0 更具优势。 您可以根据自己的具体需求和使用场景选择适合您的 AI 绘画工具。
2025-04-11
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
我应该如何开始0-1学习AI绘画?当前最好用的工具是什么?
以下是一些关于 0 1 学习 AI 绘画的建议和当前好用的工具: 您可以通过观看相关视频教程来入门,比如: “10 分钟教会你如何手把手撰写提示语,全网最细 ChatGPT 对话指南,保姆级教程!” ,视频使用到的 AI 工具包括 AI 提示语,平台链接: 。 “零基础 AI 绘画入门,Midjourney、Stable Diffusion,小白速成,一站式使用和最强入门教程” ,视频使用到的 AI 工具包括 AI 提示语,一个无需魔法上网的 AI 绘画工具,平台链接: 。 目前,Midjourney 和 Stable Diffusion 是比较受欢迎的 AI 绘画工具。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
你认为这个网站是现在系统性学习ai最好的网站嘛?请说明理由
目前难以明确您所提到的网站具体是哪一个,所以无法直接判断它是否是系统性学习 AI 最好的网站。 但从提供的信息来看,系统性学习 AI 可以有多种途径和资源: 野菩萨的课程:注重传授创意审美和思路,而非单纯的工具操作路径,能帮助学员奠定 AI 与美学的基础认知,少走弯路。同班认真学习的同学大多成为小红书上的大 V。 《雪梅 May 的 AI 学习日记》:强调系统性学习的重要性,建议通过看书听课进社区来打好基础,避免碎片化输入。 通往 AGI 之路社区:是一个致力于人工智能学习的中文知识库和社区平台,提供系统全面的 AI 学习路径,汇集了上千个人工智能网站和工具,有丰富的学习资源、实践活动,并倡导开放共享,在没有推广的情况下已有超百万用户和超千万次访问量。 综合来看,判断一个网站是否是系统性学习 AI 最好的,需要考虑其课程内容的深度和广度、教学方法的有效性、学习资源的丰富程度、社区交流的活跃度等多方面因素。
2025-03-21
你认为AI会让人失业吗
AI 有可能导致部分人失业,但情况较为复杂。 一方面,通过将知识工作者的任务自动化,AI 应能提高生产力并大幅降低单位劳动成本,例如生成式 AI 的应用大爆发就显示出了这一趋势,且有潜力让脑力劳动者先面临下岗风险。同时,AGI 实现后可能带来生产力的爆炸式增长,从而导致大规模技术性失业,财富可能更多地集中于拥有 AGI 资本的少数人。 另一方面,人工智能会优化效率,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。比如放射科医生岗位,虽然曾被认为可能因 AI 而失业,但实际情况并非如此,因为解读 X 光照片比当时看起来更困难,且放射科医生工作还有其他部分。最终,能比较明确的是,会人工智能的人会取代不会人工智能的人。 总之,AI 对就业的影响并非简单的导致失业,而是需要综合多方面因素来考量。
2025-03-11
你认为最好用的ai list
以下是一些好用的 AI 工具和相关内容: 1. ShowMeAI 周刊 No.10 中提到的具有讨论度的 AI 话题,包括: Brev.AI:能生成更好听的中文歌。 妙刷:突如其来的「出圈」与莫名其妙地「被骂」。 当我们一起围观 Cursor 限时编程项目hhh。 网传「国产 AI 产品 Q3 投放金额统计」:不是真的!没这么多! 把大模型输出的数据搞成 Excel 表格,一共有几种方法? 完成「得到 AI 产品好用榜」发布会 PPT,一共用到了这几款 AI 工具。 当 OpenAI 决定起诉 Open AI:当你的创业想法被别人「抄」走。 ModelJudge:快速测评多个 AI 模型的回答结果,并帮助做出选择。 关于大模型、复杂剧情、内容创作、AI 陪伴的一些想法@AI 投什么。 妙用 AI:把照片里的 PPT「提取」出来的小技巧。 2. 2025 年必用十大 AI 工具及 AI 工作流: 可以选择 1 2 个适合自己的工具提升效率。 可将工具串联起来形成“AI 工作流”,如“AI 演讲准备工作流”和“AI 录视频工作流”,覆盖从内容构思到最终呈现的全过程。 3. AI 编程神器 Trae: 控制按钮(开始、暂停、重新开始)和游戏说明。 能生成任务清单应用。 能根据 UI 设计图自动生成项目代码,虽存在一些不足,但具有高效代码生成能力、多技术栈支持和动态调整潜力。
2025-03-07
你认为 目前已知的模型,哪个更全面实用?
目前已知的较为全面实用的模型有以下几种: 1. OpenAI GPT4.5:这是 OpenAI 推出的模型,是其最大且知识最丰富的模型。它在 GPT4 的基础上进一步扩展了预训练,采用了新的监督技术结合传统方法进行训练,如监督微调(SFT)和基于人类反馈的强化学习(RLHF)。早期测试显示其交互更自然,知识基础更广泛,与用户意图的对齐更强,情感智力有所提升,适用于写作、编程和解决实际问题等任务。 2. Kolors:这是一个开源的文生图模型,在技术上有全面的改进,包括更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题,实测效果不错。 3. DeepSeek 深夜发布的大一统模型 JanusPro:它将图像理解和生成统一在一个模型中,采用统一的 Transformer 架构,能使用同一个模型完成图片理解和生成,提供 1B 和 7B 两种规模以适配多元应用场景,全面开源,支持商用,MIT 协议,部署使用便捷,在 Benchmark 表现优异,能力更全面。
2025-03-05
你认为最好用的AI工具有哪些
以下是一些被认为好用的 AI 工具: 聊天工具:ChatGPT ,在 2022 年 9 月至 2023 年 8 月期间拥有 146 亿次访问量,在美国使用率最高,其次是印度和巴西,多数受众通过移动设备访问,男性用户占比较高。 聊天工具:Character AI 。 写作辅助工具:QuillBot 。 绘画工具:Midjourney 。 开源社区:Hugging Face 。 聊天工具:Google Bard 。 写作工具:NovelAI 。 视频工具:CapCut 。 未知类型工具:JanitorAI 。 模型分享平台:Civitai 。 需要注意的是,虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。此外,为了让普通人更直观地马上上手,还可以选择聊天工具、绘画工具、视频工具、音乐工具等进行体验。
2025-02-15
你认为deepseek怎么样
DeepSeek 具有以下特点: 华尔街分析师的反应:展示出媲美领先 AI 产品性能的模型,成本仅为一小部分,在全球主要市场的 App Store 登顶。但 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 实际使用体验:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化,表现不错;编程能力略逊于 GPT。采用 GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 如需了解更多详细信息,您可以通过以下链接获取:
2025-02-11