Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

搭建自己的AI

Answer

以下是在扣子平台搭建自己的 AI Bot 的详细步骤:

  1. 创建一个 Bot:
    • 系统默认创建一个 Personal 的个人团队,该团队内创建的资源无法分享给其他团队成员。您也可以创建团队或加入其他团队,更多信息,请参考管理团队
    • 进入团队空间后,默认打开 Bots 页面。
    • 在 Bots 页面,单击创建 Bot。
    • 输入 Bot 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像。
    • 单击确认。Bot 创建后,您会直接进入 Bot 编排页面。您可以在左侧人设与回复逻辑面板中描述 Bot 的身份和任务。单击复制可使用模板格式添加描述。您可以在中间技能面板为 Bot 配置各种扩展能力。在右侧预览与调试面板中,实时调试 Bot。
  2. 编写提示词:
    • 配置 Bot 的第一步是编写提示词(Bot 的人设与回复逻辑功能)。提示词是给大型语言模型(LLM)的指令,以指导其生成输出。Bot 根据 LLM 对提示词的理解来回答用户的问题。提示越清晰,就越符合预期。
    • 在 Bot 配置页面的人设与回复逻辑面板中输入内容。您可以单击优化,让大语言模型优化为结构化内容。更多详细信息,参考编写提示
  3. 为 Bot 添加技能:
    • 设定 Bot 的人设与回复逻辑后,您需要为 Bot 配置对应的技能,以保证其可以按照预期完成目标任务。
    • 以获取 AI 新闻的 Bot 为例,您需要为它添加一个搜索新闻的接口来获取 AI 相关的新闻。
    • 在 Bot 编排页面的技能区域,单击插件功能对应的+图标。
    • 在添加插件页面,选择阅读新闻>头条新闻> getToutiaoNews,然后单击新增。
    • 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。
    • (可选)您也可以为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。
  4. 测试您的 Bot:
    • 配置好 Bot 后,就可以在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。
  5. 发布您的 Bot:
    • 完成测试后,您就可以将 Bot 发布到社交渠道中使用这个 Bot。
    • 在 Bot 的编排页面右上角,单击发布。
    • 在发布页面输入发布记录,并勾选发布渠道。
    • 单击发布。

更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome

相似问题:

  • 如何配置一个智能体?
  • 创建智能体相关文档
  • Coze 怎么用?
  • 关于扣子的介绍
  • 问:Coze 是什么?

另外,如果您要搭建一个微信 AI 机器人“AI 前线”,需要确定以下功能范围:

  1. 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。
  2. 需要能回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,如果知识库中信息不足以支持生成回答,则调用 AI 大模型回复,并在答案末尾加上内容:更多 AI 相关信息,请链接作者:jinxia1859。
  3. “AI 前线”需要能发布在您的微信公众号上,做为您的“微信客服助手”。

要实现以上能力的 Bot,您需要准备的内容如下:

  1. 根据 Bot 的目的、核心能力,编写 prompt 提示词。
  2. 整理“关键字”与“AI 相关资料链接”的对应关系,用 word、txt、excel 整理都行。
  3. 创建一个自己的【知识库】,用来回答 AI 相关知识。
  4. 由于“AI 前线”要按照一定的规则来处理知识,需要创建一个【工作流】,来控制 AI 按照要求处理信息。
  5. 准备好自己的微信公众号,以便将机器人发布在微信公众号上。
Content generated by AI large model, please carefully verify (powered by aily)

References

Coze官方教程

无论你是否有编程基础,你都可以在扣子平台快速搭建一个AI Bot。本文以一个可以给你发送AI新闻的Bot为例演示如何在扣子平台搭建Bot。[heading4]步骤1:创建一个Bot[content]系统默认创建了一个Personal的个人团队,该团队内创建的资源例如Bot、插件、知识库等无法分享给其他团队成员。你也可以创建团队或加入其他团队,更多信息,请参考[管理团队](https://www.coze.cn/docs/guides/teams)。进入团队空间后,默认打开Bots页面。1.在Bots页面,单击创建Bot。2.输入Bot名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像。3.单击确认。Bot创建后,你会直接进入Bot编排页面。你可以在左侧人设与回复逻辑面板中描述Bot的身份和任务。单击复制可使用模板格式添加描述。你可以在中间技能面板为Bot配置各种扩展能力。在右侧预览与调试面板中,实时调试Bot。[heading4]步骤2:编写提示词[content]配置Bot的第一步就编写提示词(Bot的人设与回复逻辑功能)。提示词是给大型语言模型(LLM)的指令,以指导其生成输出。Bot根据LLM对提示词的理解来回答用户的问题。提示越清晰,就越符合预期。在Bot配置页面的人设与回复逻辑面板中输入内容。例如:你可以单击优化,让大语言模型优化为结构化内容。更多详细信息,参考[编写提示](https://www.coze.cn/docs/guides/prompt)。

Coze官方教程

设定Bot的人设与回复逻辑后,你需要为Bot配置对应的技能,以保证其可以按照预期完成目标任务。以本文中的获取AI新闻的Bot为例,你需要为它添加一个搜索新闻的接口来获取AI相关的新闻。1.在Bot编排页面的技能区域,单击插件功能对应的+图标。2.在添加插件页面,选择阅读新闻>头条新闻> getToutiaoNews,然后单击新增。1.修改人设与回复逻辑,指示Bot使用getToutiaoNews插件来搜索AI新闻。否则,Bot可能不会按照预期调用该工具。1.(可选)你也可以为Bot添加开场白,让用户更好的了解Bot的功能。开场白功能目前支持豆包、微信公众号(服务号)。[heading4]步骤4:测试你的Bot[content]配置好Bot后,就可以在预览与调试区域中测试Bot是否符合预期。可单击清除图标清除对话记录。[heading4]步骤5:发布你的Bot[content]完成测试后,你就可以将Bot发布到社交渠道中使用这个Bot。1.在Bot的编排页面右上角,单击发布。2.在发布页面输入发布记录,并勾选发布渠道。3.单击发布。更多内容,请访问Coze官方文档英文版:https://www.coze.com/docs/welcome.html中文版:https://www.coze.cn/docs/guides/welcome相似问题:如何配置一个智能体?创建智能体相关文档Coze怎么用?关于扣子的介绍问:Coze是什么?

「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人

1.支持用户发送“关键字”,自助获取我分享的“AI相关资料链接”;2.需要能回答AI相关知识,优先以“我的知识库”中的内容进行回答,如果知识库中信息不足以支持生成回答,则调用AI大模型回复,并在答案末尾加上内容:更多AI相关信息,请链接作者:jinxia1859;3.“AI前线”需要能发布在我的微信公众号上,做为我的“微信客服助手”;以上就是我的“AI前线”Bot的核心能力,要实现以上能力的Bot,我们需要准备的内容如下:1.根据Bot的目的、核心能力,编写prompt提示词;2.整理“关键字”与“AI相关资料链接”的对应关系,用word、txt、excel整理都行;3.创建一个自己的【知识库】,用来回答AI相关知识;4.由于“AI前线”要按照一定的规则来处理知识,需要创建一个【工作流】,来控制AI按照要求处理信息;5.准备好自己的微信公众号,以便将机器人发布在微信公众号上;[heading4]3、设计“AI前线”Bot详细步骤[heading5]1)先展示下“AI前线”Bot的【最终效果】界面如下:[content]

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
搭建在线知识库,在线客服
以下是关于搭建在线知识库和在线客服的相关内容: RAG 流程: 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 以构建智能问答客服为例,了解 RAG 流程中的“是什么”与“为什么”同等重要。 创建智能体: 手动清洗数据创建知识库: 点击创建知识库,创建画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以“”分割。 选择飞书文档、自定义,输入“”,可编辑修改和删除。 点击添加 Bot,可在调试区测试效果。 本地文档: 注意拆分内容以提高训练数据准确度。 以画小二课程为例,先放入大章节名称内容,再按固定方式细化处理每个章节。 发布应用:点击发布,确保在 Bot 商店中能搜到。 开发:GLM 等大模型外接数据库: 项目启动:包括 web 启动(运行 web.py,显存不足调整模型参数,修改连接)、API 模式启动、命令行模式启动。 上传知识库:在左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服等。MOSS 同理。
2025-04-13