Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

整合多组学数据用什么方法

Answer

整合多组学数据的方法包括以下几种:

  1. 机器学习中的集成学习方法,如 Bagging(Bootstrap Aggregating)。其核心思想是通过多次抽样生成多个数据集,训练多个模型,并将这些模型的结果进行平均(或投票)来提高整体预测的稳定性和准确性。具体包括从原始数据集中有放回地抽取多个子集,用每个子集训练独立的相同模型类型(如决策树、多项式等),对于回归任务取平均结果,对于分类任务通过多数投票决定最终分类结果。
  2. 在未来的机器学习发展中,预计会在数据整合方面取得进展,例如整合多种模态(如图像、文本和传感器数据)和数据领域的数据,以创建更丰富和更健壮的复杂现象的表示。为实现这种多模态和跨领域的理解,机器学习模型将需要在深度学习、表示学习、自我监督学习和常识推理方面取得进展,并将领域知识和常识推理结合起来。
Content generated by AI large model, please carefully verify (powered by aily)

References

深度 | 神经网络和深度学习简史第四部分:深度学习终迎伟大复兴

其构思很简单:为了避免过度拟合,我们可以随机假装在训练当中有些神经元并不在那儿。想法虽然非常简单——被称为丢弃法(dropout)——但对于实施非常强大的集成学习方法又非常有效,这意味着我们可以在训练数据中实行多种不同的学习方法。随机森林——一种在当今机器学习领域中占主导地位的方法——主要就是得益于集成学习而非常有效。训练多个不同的神经网络是可能的,但它在计算上过于昂贵,而这个简单的想法在本质上也可取得相同的结果,而且性能也可有显著提高。然而,自2006年以来的所有这些研究发现都不是促使计算机视觉及其他研究机构再次尊重神经网络的原因。这个原因远没有看来的高尚:在现代竞争的基准上完全摧毁其他非深度学习的方法。Geoffrey Hinton召集与他共同写丢弃法的两位作家,Alex Krizhevsky与Ilya Sutskever,将他们所发现的想法在ILSVRC-2012计算机视觉比赛中创建了一个条目。对于我来说,了解他们的工作是非常惊人的,他们的「使用深度卷积神经网络在ImageNet上分类」(ImageNet Classification with deep convolutional neural networks)一文其实就是将一些很旧的概念(例如卷积神经网络的池化及卷积层,输入数据的变化)与一些新的关键观点(例如十分高性能的GPU、ReLU神经元、丢弃法等)重新组合,而这点,正是这一点,就是现代深度网络的所有深意了。但他们如何做到的呢?

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

“<begin>从个人助理和推荐系统到自动驾驶汽车和自然语言处理,机器学习应用在过去十年中展示了显著的能力,以增强人类的决策制定、生产力和创造力。然而,机器学习仍然远离实现其全部潜力,并且在算法设计和实施方面面临着许多挑战。随着技术的不断进步和改进,以下是未来十年可能发生的一些最令人兴奋的发展。1.数据整合:机器学习中预计的关键发展之一是整合多种模态和数据领域的数据,例如图像、文本和传感器数据,以创建更丰富和更健壮的复杂现象的表示。例如,想象一个不仅能识别面孔,还能从他们的面部表情中推断出他们的情绪、意图和个人特征的机器学习系统。这样的系统在客户服务、教育和安全等领域可能有着巨大的应用。为了实现这种多模态和跨领域的理解,机器学习模型将需要在深度学习、表示学习、自我监督学习和常识推理方面取得进展,并将领域知识和常识推理结合起来。2.民主化和可访问性:在未来,机器学习可能变得更加易于广泛用户获取,其中许多人将不需要深入了解技术专家就能理解如何使用它。机器学习平台可能很快允许用户轻松上传他们的数据,选择他们的目标并定制他们的模型,而无需编写任何代码或担心底层基础设施。这可能会显著降低进入和采用机器学习的门槛,并赋予用户解决自己的问题并生成自己的见解的能力。3.以人为本的方法:随着机器学习系统变得更加智能,它们也可能变得更加以人为本和社交意识,不仅执行任务,而且以积极的方式与人类互动并从人类学习。例如,机器学习系统不仅可以诊断疾病,还可以与患者沟通,同情他们的担忧并提供个性化的建议。像这样的系统可以提高医疗保健的质量和效率,同时改善患者和提供者的福祉和满意度。<end>”鉴于这个示例文章,写一篇与之观点不同的文章。

[算法学习] Bootstrap Aggregating 分类/回归

[heading1]基础概念[content]Bagging(Bootstrap Aggregating)是一种集成学习方法,主要用于减少机器学习模型的方差,并提高其泛化能力。Bagging的核心思想是通过多次抽样生成多个数据集,训练多个模型,并将这些模型的结果进行平均(或投票)来提高整体预测的稳定性和准确性。[heading1]Bagging的定义与核心[content]Bootstrap抽样:从原始数据集中有放回地抽取多个子集。每个子集的大小与原始数据集相同,但由于是有放回的抽样,可能会出现重复样本。训练多个模型:每个子集都用于训练一个独立的模型。这些模型通常是相同的模型类型(如决策树,多项式等)。集成结果:对于回归任务,将多个模型的预测结果取平均;对于分类任务,通过多数投票来决定最终的分类结果。

Others are asking
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
AI和知网整合的工具
目前存在能联网检索的 AI ,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验并保持用户数据私密性。这些 AI 搜索工具的出现标志着信息检索领域的重要发展,结合 AI 技术和搜索引擎大幅提升数据集命中预期,为实际应用带来更多可能性。 另外,提供以下功能:和 AI 知识库对话,可问任何关于 AI 的问题;集合精选的 AI 网站,按需求找到适合的工具;集合精选的提示词,可复制到 AI 对话网站使用;呈现知识库的精华内容。 在 Obsidian 中嵌入 AI 辅助工具,第五步是打开新面板,具体操作包括:用命令面板打开创建的页面(默认快捷键 Ctrl+P ),在弹出的搜索框中输入插件名称 custom frames ,在下拉选项中选择 OpenKimi ,打开设置好的 Kimi 窗口。Obsidian 与 AI 组合使用有几种思路,如内嵌网页+AI(Custom frame)、笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容 。其中“内嵌网页+AI(Custom frame)”的简单嵌入方法已分享,后续为您介绍 2 4 三类工具的配置方法。
2025-03-28
你整合了哪些大模型
以下是整合的一些大模型: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用。但 GPT4、Claude+产品需要付费订阅使用。访问地址:。 2. 多模态大模型: Flamingo:代表了一系列视觉语言模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。 BLIP2:引入了一个资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,实现对冻结 LLMs 的充分利用。利用 LLMs,BLIP2 可以使用自然语言提示进行零样本图像到文本的生成。 LLaVA:率先将 IT 技术应用到 MM 领域。为了解决数据稀缺问题,LLaVA 引入了使用 ChatGPT/GPT4 创建的新型开源 MM 指令跟踪数据集以及 MM 指令跟踪基准 LLaVABench。 MiniGPT4:提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐。这种有效的方法能够复制 GPT4 所展示的功能。 mPLUGOwl:提出了一种新颖的 MMLLMs 模块化训练框架,结合了视觉上下文。为了评估不同模型在 MM 任务中的表现,该框架包含一个名为 OwlEval 的教学评估数据集。 XLLM:陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用 QFormer 的语言可迁移性,XLLM 成功应用于汉藏语境。 VideoChat:开创了一种高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。 大型模型主要分为两类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。二者在处理的信息类型、应用场景和数据需求方面有所不同。 此外,相对大型模型,还有被设计来完成特定任务的规模较小的模型,例如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫、狗)。
2025-03-05
deepseek如何定制化打造属于自己的内容整合写手
以下是关于如何定制化打造属于自己的内容整合写手的相关信息: 新闻播报自动化工作流: 内容获取:输入新闻链接,系统自动提取核心内容。开始节点需输入新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片(以 1ai.net 资讯为例),利用图片链接提取节点获取新闻主图,调整图片节点将 url 格式转为 img 格式。 文字处理:使用链接读取节点提取文字内容,在提取链接后接上大模型节点,用 DeepSeek R1 模型重写新闻为口播稿子,可在提示词中加入个性化台词。需注意 DeepSeek R1 基础版限额使用,可手动接入专业版。 DeepSeek 提示词方法论: 高阶能力调用:包括文风转换矩阵(如作家风格移植、文体杂交、学术口语化等)和领域穿透技术(如行业黑话破解)。 场景化实战策略:涵盖商业决策支持、创意内容生成、技术方案论证。 效能增强技巧:如对话记忆管理(包括上下文锚定、信息回溯、焦点重置)和输出质量控制(针对过度抽象、信息过载、风格偏移等问题的修正指令)。 特殊场景解决方案:包括长文本创作(分段接力法、逻辑粘合剂)和敏感内容处理(概念脱敏法、场景移植法)。 AI 编程与炼金术:Build on Trae: 相关知识图谱包含多个章节,如 Trae 的介绍/安装/疑难杂症、图片字幕生成器、DeepSeek R1 驱动的 Life Coach、DeepSeek 驱动的网页金句卡片生成等,涉及 Node.JS 安装、Python 安装、申请 DeepSeek R1 API、网页接入 DeepSeek API 等知识点。
2025-02-25
deepseek如何整合在飞书中
DeepSeek 整合在飞书中的相关信息如下: 2 月 19 日:《DeepSeek 最新论文科普解读:NSA,物美价廉的超长上下文方案》介绍了 DeepSeek 最新论文提出的“Native Sparse Attention”(NSA),一种高效的超长上下文方案,显著提升模型性能。《输入观点一键生成文案短视频》介绍了基于 Coze 平台的视频生成工作流,通过集成 DeepSeek R1 模型等技术,用户可通过表单输入主题观点自动生成短视频并推送至飞书消息。 2 月 10 日:《最好的致敬是学习:DeepSeekR1 赏析》专为非技术人群设计,介绍了 R1 和 V3 的技术亮点等。《DeepSeek 创新源于芯片封锁,Anthropic 或成最大输家;美国不是通过创新竞争,而是通过封锁竞争》探讨了 DeepSeek 的崛起及相关情况。《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》介绍了将飞书多维表格与 DeepSeek R1 结合提升工作效率的方法。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法:2 月 14 日 8 点有直播,直播结束可看回放。学习文档有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》。模板可在复制。创建账号时普通账号需自行升级或注册专业号。创建智能体时点击创建先完成一个智能体的创建。若已创建好推理点,可在 Bot 编排里直接看到和选择创建好的推理模型。测试可用后直接发布,注意发布到公共空间时他人使用 API 会消耗 Token,可设置为仅自己使用。若想搭建联网及复杂的工作流,可看《韦恩:被困在离线孤岛?DeepSeek 联网版我已经用扣子实现了!!不卡顿!!》。
2025-02-23
目前最好用的ai整合网站
目前一些好用的 AI 整合网站包括: ChatGPT Plus:其用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot:作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 You.com 和 Neeva AI 等:提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 此外,WaytoAGI 网站也有一些特色功能,比如: 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 AI 提示词:集合了精选的提示词,您可以复制到 AI 对话网站来使用。 知识库精选:将每天知识库的精华内容呈现给大家。 另外,还有一些 AI 应用,例如: 联想设备管理平台:AI 办公设备管理系统,使用数据分析、物联网技术,管理办公设备,提高设备利用率。 新氧 APP:AI 美容护肤机构推荐平台,运用数据分析、自然语言处理技术,为用户推荐优质的美容护肤机构。 大众点评亲子频道:AI 儿童教育机构推荐平台,通过数据分析、自然语言处理,为家长推荐优质的儿童教育机构。 汽车之家车商城:AI 汽车销售平台,借助数据分析、自然语言处理,为消费者提供汽车购买渠道。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-28
AI 制作短视频的方法
以下是关于 AI 制作短视频的方法: 1. 确定视频风格和主题:使用 Fanbook 中的 niji6 模型及sref 指令,加上每张图片的提示词来确定视频风格的一致性。比如根据丝绸之路的古风主题确定风格和时长,然后设定故事主线和镜头。 2. 创作故事剧本和分镜头:参考分镜头的基本格式要求,按照场景、地点、镜号、画面描述、台词、音效等维度进行填充。尽可能精简人物对话,提炼重点。当缺乏画面灵感时,可以借助语言大模型,如 Kimi 来获取帮助。 3. 生成角色和场景:根据剧本中的人物性格特征和时代背景,描绘人物的提示词、上传角色参考图cref,并将角色背景扣除以便于进行角色加背景的融合生成时进行垫图操作。场景提示词从剧本中的画面描述进行提取,采用文生图模式,画面风格选择提前准备好的风格图进行垫图,上传角色图、场景背景进行参考生成,提高人物和场景的融合度。 4. 让图片动起来:使用即梦进行图生视频,上传图片至视频生成模块,用简单提示词描绘画面中的动态内容,可生成时长为 3 秒钟的画面。运镜类型可根据剧本中的镜头描绘设置,主要设置以随机运镜为主,生成速度根据视频节奏选择。 此外,根据视频脚本生成短视频的 AI 工具有多种,适用于不同的应用场景和需求,包括: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. Runway:能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
推荐几个AI工具及其使用方法,我要用于病案质控
以下为您推荐几个可用于病案质控的 AI 工具及其使用方法: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。您可以通过访问使用。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。您可以通过使用。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关病案质控的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。您可以通过使用。 这些工具可以帮助您从不同的角度审视和改进您的病案质控工作,您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-13
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
chatgpt4.5的使用方法
以下是关于 ChatGPT 4.5 的使用方法: 1. 目前 ChatGPT 官网有 GPT3.5、GPT4 和 ChatGPT 4.5 三个版本。ChatGPT 4.5 发布后引起关注,其可以免费体验,但免费体验次数有限。 2. GPT3.5 为免费版本,拥有账号即可使用,但智能程度不如 ChatGPT 4.5,且无法使用 DALL.E3 等功能和插件。 3. ChatGPT 4.5 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 4. 若想使用更多功能更智能的 ChatGPT 4.5,需要升级到 PLUS 套餐,收费标准为 20 美金一个月。GPT4 还有团队版企业版,但费用更贵,一般推荐使用 PLUS 套餐。 5. 关于注册、安装和订阅的详细步骤,您可以参考相关文章,如作者为 JessieZTalk 的亲测文章(原文链接:https://mp.weixin.qq.com/s/tzCVGrwgeG6Bss83Xmep0g )。
2025-03-28
数据挖掘评论分析生成可视化的免费方法
目前暂时没有关于数据挖掘评论分析生成可视化免费方法的相关内容。但您可以通过以下途径寻找免费的解决方案: 1. 利用开源的数据挖掘和可视化工具,如 R 语言中的 ggplot2 库、Python 中的 matplotlib 和 seaborn 库等。 2. 搜索在线的免费数据可视化平台,部分平台可能提供一定程度的数据挖掘和评论分析的可视化功能。 3. 参考相关的技术论坛和社区,获取其他用户分享的免费方法和经验。
2025-03-26
请详细讲述一下这个网站《通往AGI之路》的学习方法?
《通往 AGI 之路》的学习方法如下: 1. 系统学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等高质量学习内容,并整理成学习笔记,在整理过程中与大家交流互动。 2. 社区共创学习:对于觉得系统学习枯燥的同学,可以等待社区共创内容,通过共创做小项目来反向推动学习。 3. 了解相关原理:学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 4. 探索应用:例如了解 Stable Diffusion 运作原理与 GPT 训练现状。 5. 针对特定软件:对于 AE 软件,可在 B 站找丰富的入门课程自学,也可从包图网下载工程文件学习。通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习,还可参考模板。 6. 名词解释:理解包括 AGI、AIGC、agent、prompt 等 AI 相关名词,可通过与 AI 对话或李继刚老师的课程来理解。 7. 信息获取:关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 8. 参与活动:参加如 AIPO、CONFIUI 生态大会等社区活动,每月还有切磋大会。 9. 阅读经典:阅读介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章,以及软件 2.0 时代相关内容。 10. 初学者推荐:对于初学者,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。同时,整理 open AI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-23
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11