Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

法律方面的运用

Answer

以下是关于法律方面在 AI 领域的运用:

开源中文法律大语言模型

  • LaWGPT:基于中文法律知识的大语言模型。地址:[https://github.com/pengxiao-song/LaWGPT] 。该模型在通用中文基座模型基础上扩充法律领域专有词表、大规模中文法律语料预训练,并通过构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,增强了在法律领域的基础语义理解和执行能力。
  • LexiLaw:中文法律大模型。地址:[https://github.com/CSHaitao/LexiLaw] 。它是基于 ChatGLM-6B 微调的,旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,以及对法律条款、案例解析、法规解读等方面的查询。
  • Lawyer LLaMA:中文法律 LLaMA。地址:[https://github.com/AndrewZhe/lawyer-llama] 。开源了一系列法律领域的指令微调数据和基于 LLaMA 训练的中文法律大模型的参数,首先在大规模法律语料上进行了 continual pretraining,借助 ChatGPT 收集数据进行指令微调,让模型习得将法律知识应用到具体场景中的能力。

律师常用 Prompt 场景

  • 案例检索:最好使用法律行业垂类的 AI 产品。Prompt 指令词示例:“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。”预计效果是 AI 系统将检索相关数据库,找出符合要求的判例,并提炼出关键判决理由和结果,形成摘要报告。Prompt 结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】
  • 类案检索:同样最好使用法律行业垂类的 AI 产品。

相关法律规定: 《生成式人工智能服务管理暂行办法》:

  • 第一条:为促进生成式人工智能健康发展和规范应用,维护国家安全和社会公共利益,保护公民、法人和其他组织的合法权益,根据相关法律、行政法规制定本办法。
  • 第二条:利用生成式人工智能技术向中华人民共和国境内公众提供生成文本、图片、音频、视频等内容的服务适用本办法。国家对利用生成式人工智能服务从事特定活动另有规定的,从其规定。未向境内公众提供生成式人工智能服务的某些情况不适用本办法。
  • 第三条:国家坚持发展和安全并重、促进创新和依法治理相结合的原则,对生成式人工智能服务实行包容审慎和分类分级监管。
  • 第四条:提供和使用生成式人工智能服务,应当遵守法律、行政法规,尊重社会公德和伦理道德,并遵守多项规定,包括不得生成法律、行政法规禁止的内容,防止产生各种歧视,不得实施垄断和不正当竞争行为,尊重他人合法权益,提升服务的透明度,提高生成内容的准确性和可靠性。
Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

LaWGPT:基于中文法律知识的大语言模型地址:[https://github.com/pengxiao-song/LaWGPT](https://github.com/pengxiao-song/LaWGPT)简介:该系列模型在通用中文基座模型(如Chinese-LLaMA、ChatGLM等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。LexiLaw:中文法律大模型地址:[https://github.com/CSHaitao/LexiLaw](https://github.com/CSHaitao/LexiLaw)简介:LexiLaw是一个基于ChatGLM-6B微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。Lawyer LLaMA:中文法律LLaMA地址:[https://github.com/AndrewZhe/lawyer-llama](https://github.com/AndrewZhe/lawyer-llama)简介:开源了一系列法律领域的指令微调数据和基于LLaMA训练的中文法律大模型的参数。Lawyer LLaMA首先在大规模法律语料上进行了continual pretraining。在此基础上,借助ChatGPT收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。

潘帅:手把手分享法律人如何用好AI — Prompt篇

律师常用Prompt场景Prompt的艺术在于如何精准地与AI进行有效沟通。在法律领域,有效的Prompt能够引导AI提供更加精确和相关的输出。场景一:案例检索案例检索最好是使用法律行业垂类的AI产品,通用型AI要么查不出来,要么数据不全,要么是生成式的内容不能满足需求。1.Prompt指令词:请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。2.预计效果:AI系统将检索相关数据库,找出符合要求的判例,并提炼出这些案例中有关“混淆可能性”标准的关键判决理由和结果,形成摘要报告。3.其他例子:(1)Prompt指令词:检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。(2)Prompt指令词:比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。(3)Prompt指令词:研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。4.Promopt结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望AI做的事情】场景二:类案检索案例检索最好是使用法律行业垂类的AI产品,通用型AI要么查不出来,要么数据不全,要么是生成式的内容不能满足需求。1.Prompt指令词:

【法律规定】生成式人工智能服务管理暂行办法

第一条为了促进生成式人工智能健康发展和规范应用,维护国家安全和社会公共利益,保护公民、法人和其他组织的合法权益,根据《中华人民共和国网络安全法》、《中华人民共和国数据安全法》、《中华人民共和国个人信息保护法》、《中华人民共和国科学技术进步法》等法律、行政法规,制定本办法。第二条利用生成式人工智能技术向中华人民共和国境内公众提供生成文本、图片、音频、视频等内容的服务(以下称生成式人工智能服务),适用本办法。国家对利用生成式人工智能服务从事新闻出版、影视制作、文艺创作等活动另有规定的,从其规定。行业组织、企业、教育和科研机构、公共文化机构、有关专业机构等研发、应用生成式人工智能技术,未向境内公众提供生成式人工智能服务的,不适用本办法的规定。第三条国家坚持发展和安全并重、促进创新和依法治理相结合的原则,采取有效措施鼓励生成式人工智能创新发展,对生成式人工智能服务实行包容审慎和分类分级监管。第四条提供和使用生成式人工智能服务,应当遵守法律、行政法规,尊重社会公德和伦理道德,遵守以下规定:(一)坚持社会主义核心价值观,不得生成煽动颠覆国家政权、推翻社会主义制度,危害国家安全和利益、损害国家形象,煽动分裂国家、破坏国家统一和社会稳定,宣扬恐怖主义、极端主义,宣扬民族仇恨、民族歧视,暴力、淫秽色情,以及虚假有害信息等法律、行政法规禁止的内容;(二)在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生民族、信仰、国别、地域、性别、年龄、职业、健康等歧视;(三)尊重知识产权、商业道德,保守商业秘密,不得利用算法、数据、平台等优势,实施垄断和不正当竞争行为;(四)尊重他人合法权益,不得危害他人身心健康,不得侵害他人肖像权、名誉权、荣誉权、隐私权和个人信息权益;(五)基于服务类型特点,采取有效措施,提升生成式人工智能服务的透明度,提高生成内容的准确性和可靠性。

Others are asking
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
如何学习准确运用AI提示词
以下是关于如何学习准确运用 AI 提示词的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中查找。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 对于新手学习 AI,您可以: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,通过在线教育平台按自己节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 在商业化问答场景中,大语言模型如同全知全能的人,提示词是告诉其角色和专注技能,使其按需求变成“员工”,知识库则是给“员工”的工作手册。例如设定阿里千问模型为“美嘉”角色,放入《爱情公寓》全季剧情作为知识库,当提问“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”时,能得到相应回复。
2025-04-10
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
如何运用ai学习ae
以下是关于如何运用 AI 学习 AE 的相关内容: AE 软件的功能及学习路径: 基本功能:AE 可通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。 与 AI 结合运用:如用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 其他应用:用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 学习路径:可在 B 站找丰富的 AE 软件入门课程自学,也可从包图网下载工程文件学习。 AE 软件的使用与创作分享: 学习方法:通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 与 AI 的关系:AI 出现后,AE 使用减少,有些动效可用 AI 完成。 在短剧中的应用:在火焰、文字、光线等方面有少量应用。 未来的分享计划:后续可能分享短剧工作流等内容。
2025-03-25
作为一名高中语文教师,该学习哪些知识,能够更好地在工作中运用AI
作为一名高中语文教师,为了在工作中更好地运用 AI,您可以学习以下知识: 1. 提示词设计:掌握有效的提示词设计公式,例如 RTFC,以便更精准地向 AI 提出需求。 2. 利用 AI 工具:如用 Metaso 建立案例库,随时询问随时学习。 3. 了解 AI 在教学中的应用技巧:包括用 AI 配字幕、翻译、思维导图等快速总结和学习讲座内容。 4. 掌握 AI 赋能教学设计:以高中语文课程标准为导向,结合学生主体和核心素养,设计教学流程。例如在《再别康桥》的教学设计中,通过创设情境、品鉴特色、融思迁移等环节,融入地理、美术、音乐等多学科知识,借助人工智能协助修改诗歌创作。 5. 学习智能作文批改指导:利用相关工具提升作文批改的效率和质量。 6. 参加相关工作坊:如 AI 进阶工作坊,了解最新 AI 技术与实践案例分享,掌握全球 AI 技术在教育界的新发展和新应用。 同时,建议您参加适合有初步 AI 使用经验、期待了解最新技术进展、渴望分享交流的老师的课程和活动,不断提升自己在 AI 应用方面的能力。
2025-03-24
有哪些好用的法律ai
以下是一些好用的法律 AI 应用场景和示例: 1. 诉讼策略制定: AI 将基于商标法等相关条款和案例法,为商标侵权案件提供诉讼策略,包括对原告商标权利的分析、被告侵权行为的评估、关键证据搜集建议、法律抗辩点及和解或调解策略。 其他例子: 为专利侵权案件制定诉讼策略,分析专利有效性、被告侵权行为及抗辩理由,提出证明侵权和计算损害赔偿的建议。 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略,包括主张权益、证据收集重点及证明雇主违约行为。 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略,包括证明许可协议违反、计算损失赔偿及可能的合同解除条件。 模拟法庭,如模拟商业合同违约的法庭审理,分析双方论点、证据和法律依据,预测判决结果,给出优化法庭陈述和证据呈现的建议。 2. 法律意见书撰写: AI 根据案件背景、证据材料和法律法规,自动撰写初步法律意见书,包含案件事实梳理、法律分析和结论。 其他例子: 针对商业秘密泄露案件,分析法律责任和赔偿范围,撰写法律意见书,提供应对策略。 为计划上市的公司提供关于公司治理结构的法律意见书,确保符合相关法规要求。 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,制定应对措施。 起草股权转让协议,包括转让方和受让方信息、股权转让份额、价格、支付方式和时间表、先决条件、双方权利义务、保密、违约责任和争议解决条款等。 3. 指令风格和技巧: 可指定 AI 模仿某位资深律师的逻辑严谨和言简意赅的风格,使其提供的信息更符合专业律师的沟通和表达习惯。 运用 PEMSSC 方法,如选择个性化的风格、给出参考或逻辑结构、从多个角度思考、进行总结概括、使用分隔符号区分等。 个性化风格:选择幽默且富有洞察力的风格,融入创新视角。 参考和逻辑结构:在提供法律建议时,采用 SWOT 分析法或 4P 原则等逻辑结构。 多角度思考:在分析商事诉讼时,从市场趋势、竞争对手行为、战略规划、财务状况和市场前景等角度思考诉讼策略。
2025-04-18
我是一名律师,怎么写好法律研究的提示词
作为一名律师,写好法律研究的提示词可以参考以下要点: 1. 理解 Prompt 的概念:Prompt 是给人工智能系统提供的信息或问题,用于引导其产生特定回答或执行特定任务,就像启动和引导对话的起点。对于 AI 来说,好的 Prompt 能帮助其更准确理解需求并给出更有用的回答。 2. 采用建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):明确希望 AI 的角色和能力,如专注于民商事法律领域,擅长案例研究、法律条文检索及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理复杂合同纠纷案件时,向 AI 提供案件关键事实、相关法律及背景。 Statement(陈述):直接明确期望 AI 完成的任务,如总结案件中双方诉求、检索法条、预测判决结果。 Personality(个性):确定希望 AI 以何种风格或方式回答。 Experiment(举例):通过举例进一步说明。 3. 转变思路:不要期待设计一个完美的提示词就能让 AI 百分百给出完美答案,提示词实际上是一个相对完善的“谈话方案”,成果需要在与 AI 的对话中产生。要多给 AI 几轮对话修正的余地,因为很多时候自己刚开始也不知道想要什么。 4. 示例:如陶力文律师习惯用的大模型是 KIMI,将提示词称为【灵机符箓】,把 AI 称为【灵机】。在具体的提示词中,明确作者、版本、语言等信息,赋予 AI 特定身份以划定边界,同时明确总的任务流程和关键变量,如基础材料和语言风格。
2025-04-11
法律AI
以下是关于法律 AI 的相关内容: 在法律领域,AI 具有多方面的应用和作用: 法律意见书撰写: AI 能够根据案件背景、证据材料及适用法律法规,自动撰写初步的法律意见书,包含对案件事实的梳理、法律分析和结论部分。例如: 1. 针对商业秘密泄露案件,分析法律责任和赔偿范围,为客户提供应对策略。 2. 为计划上市的公司提供关于公司治理结构的法律意见书,包括股东权益保护和董事会职责,确保符合相关法规要求。 3. 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,为客户制定应对措施。 4. 为公司股权转让交易起草股权转让协议,规定转让方和受让方的信息、股权转让的份额、价格、支付方式和时间表等。 5. 起草初创公司股权转让协议,明确创始股东向新投资者转让股权的条件等。 6. 为上市公司股份转让交易起草协议,包括股份描述、转让价格、支付安排等。 7. 起草家族企业股权内部转让协议,涵盖股权分配、价格确定方式等。 诉讼策略制定: AI 可基于相关法律条款和案例法,提供诉讼策略,包括对权利的分析、侵权行为评估、证据搜集建议等。例如: 1. 为专利侵权案件制定诉讼策略,分析专利有效性、侵权行为等。 2. 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略。 3. 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略。 模拟法庭: AI 能模拟法庭审理过程,分析双方论点、证据和法律依据,预测判决结果,并给出优化法庭陈述和证据呈现的建议。 使用技巧和注意事项: 1. 进行数据分析时,将环节分开处理以优化性能和便于发现修正问题。 2. 针对复杂问题,采用逐步深化和细化的方式提问。 3. 为 AI 系统提供大量数据和示例、高质量的参考材料、详细的流程和知识。 4. 在 Prompt 中使用法律术语引导 AI 回答方向。 5. 对 AI 的回答进行交叉验证,结合自身专业知识筛选判断,确保符合法律伦理、立法目的和实务。
2025-04-07
关于处理法律事务的提示词
以下是关于处理法律事务的提示词相关内容: 1. 陶力文律师观点:不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应将提示词视为相对完善的“谈话方案”,成果在对话中产生。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入提示词就得到想要的东西。陶律师习惯用的大模型是 KIMI,也可使用 GPT、文心一言、豆包等。其个人 Prompt 库取名为【元始洞玄灵宝枢机 AI 符法集成道藏】,库里每篇灵机符箓命名为【敕令 XXXX】。【箓】描述符箓整体所属、版本,【符】关键,涉及具体操作步骤和方法,开头赋予 AI 身份划定边界。 2. 潘帅观点:律师常用 Prompt 场景包括案例检索和类案检索。案例检索最好使用法律行业垂类的 AI 产品,通用型 AI 可能存在问题。案例检索的 Prompt 指令词结构为【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】,并列举了多个具体例子,如商标侵权案件中“混淆可能性”标准的判例检索等。
2025-04-03
社招如何从法律行业转化为AI产品经理
以下是为您提供的从法律行业转化为 AI 产品经理的一些建议: 1. 学习 AI 相关知识:了解人工智能的基本概念、技术和应用,包括机器学习、深度学习、自然语言处理等。 2. 掌握相关工具和技术:熟悉如 ChatGPT、MJ 等常用的 AI 工具,以及模型微调等技术。 3. 积累项目经验:可以尝试参与一些 AI 相关的项目,哪怕是小型的,以增加实践经验。 4. 关注行业动态:及时了解 AI 产品领域的最新趋势和发展,为转型做好准备。 5. 提升产品管理能力:学习产品规划、需求分析、用户体验设计等方面的知识和技能。 6. 建立人脉网络:与从事 AI 产品工作的人员交流,获取更多的信息和机会。 另外,参考以下案例可能对您有所帮助: 黄鹏从法律行业成功转型到 GPT 产品领域,浅尝过 MJ、Runway,了解模型微调。 潘帅分享了法律人如何用好 AI 的 Prompt 指令词,例如在法规研究与解读方面,针对具体法律和需求生成详细的分析和指南。在法律意见书撰写或非诉交易文件材料方面,根据已有证据材料和相关法律条文撰写初步法律意见书。 希望以上内容对您有所帮助。
2025-03-18
我想了解法律AI的最新发展状况
以下是关于法律 AI 最新发展状况的一些信息: 潘帅作为法律科技探索者,整理了关于 AI 大模型使用方法的资料并结合自身经验编写了相关内容。他指出在人工智能时代,律师要实现人机协同,需理解 AI 优劣势及自身长处与不足。 《促进创新的人工智能监管方法》提到,AI 已在众多领域带来重大进步和效率提升,具有巨大的变革潜力,能用于多种场景,推动经济增长和创造就业。但这只是开始,随着技术发展,会有更多应用出现,英国需创造利于创新的监管环境。 AIGC 法律风险研究报告指出,AI 将改变生活各方面,带来生产力解放和生产关系变化,法律需做出回应。生成式人工智能技术在多领域带来创新、效率与价值的同时,也带来了传播虚假信息、侵犯个人信息权益、数据安全等法律风险。飒姐法律团队致力于为其发展保驾护航,总结法律红线风险,提示合规要点。
2025-03-11
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
有没有很对汽车三维建模方面的AI应用 介绍介绍
以下是一些与汽车三维建模相关的 AI 应用: Vibe Draw:可以根据草图进行 3D 建模。 PhysTwin:能够通过视频创建交互式物理数字孪生。 GroomLight:用于重打光的人体头发外观建模的混合逆向渲染。
2025-04-11
有没有很对汽车三维建模方面的AI应用 介绍介绍
以下是一些与汽车三维建模相关的 AI 应用: Vibe Draw:可以根据草图进行 3D 建模。 PhysTwin:能够通过视频创建交互式物理数字孪生。 GroomLight:用于重打光的人体头发外观建模的混合逆向渲染。
2025-04-11
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
minimax侧重在哪些方面
MiniMax 侧重在以下几个方面: 1. 语音技术: 快速克隆:仅需 10 秒音频即可克隆语音,智能情感系统精准捕捉细腻情感变化。 多维预置语音:提供 300+语音选项,支持 17 种语言(不断扩展),涵盖口音、性别、年龄、风格等。 专业音效:支持房间音效、电话滤镜,输出接近录音室级别。 2. 通用人工智能: 成立于 2021 年 12 月,是通用人工智能时代基础设施建设者和内容应用创造者。 拥有文本、语音、视觉多种模态融合的通用大模型引擎能力并打通产品全链路。 自研了整套端到端 AGI 引擎系统。 3. 团队组成:核心技术研发成员均来自全球知名高校和全球顶尖科技公司,拥有世界顶尖自然语言处理、语音、计算机视觉、计算机图形学等工业界和学术界经验,拥有多项全球领先的人工智能领域研究成果,具有上百个全球发明专利,1/3 的团队成员拥有世界顶尖技术实验室的博士学位。 相关链接: 免费试用: API 平台:
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28