Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

好的,告诉我知识库有些什么知识

Answer

以下是关于知识库的相关知识:

  • 知识表示和专家系统:专家系统是符号人工智能的早期成就之一,它基于从人类专家提取的知识库,并包含推理引擎。专家系统像人类推理系统一样包含短期记忆和长期记忆,以知识为基础的系统分为问题记忆(包含与当前问题有关的静态知识)、知识库(代表问题领域的长期知识)、推理引擎(协调问题状态空间的搜索过程)。例如,有根据动物物理特征判断动物的专家系统,其规则左侧的条件和操作本质上是对象-属性-值三元组。
  • 银海有话说:“通往 AGI 之路”是由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里大家既是知识的消费者也是创作者。这个知识库以“无弯路,全速前进”为目标,其成长得益于大家的支持,它不仅是知识库,还是连接学习者、实践者和创新者的社区。
  • 知识库起飞指南:可以把知识库想象成 24 小时在线的 AI 老师、永不嫌烦的知识管家、不断成长的智慧宝库。里面藏着 AI 工具的“傻瓜式说明书”、大神们的“踩坑经验分享”、实用的“一招制胜”秘籍。开启宝藏的第一步是点击飞书链接,知识库的界面左边导航栏是指南针,上面搜索框是探宝雷达,中间内容区是知识的海洋。里面具体有什么可以参考文章[知识库有什么|感谢银海 inhai]。
Content generated by AI large model, please carefully verify (powered by aily)

References

知识表示和专家系统

符号人工智能的早期成就之一是专家系统——为充当某个有限问题领域的专家而设计的计算机系统。它们基于从一个或多个人类专家那里提取的知识库,并包含一个推理引擎,在此基础上进行推理。专家系统就像人类的推理系统一样,包含短期记忆和长期记忆。同样,在以知识为基础的系统中,我们会区分以下几个部分:问题记忆(Problem memory):包含与当前要解决的问题有关的知识,如病人的体温或血压、是否有炎症等。这种知识也被称为静态知识(static knowledge),因为它包含了快照信息,记录着我们在当前状态下对问题的了解——即所谓的问题状态(problem state)。知识库(Knowledge base):代表某个问题领域的长期知识。它是从人类专家那里人工提取的,不会因外部的咨询而改变。由于它允许我们从一个问题状态前往另一个问题状态,因此也被称为动态知识(dynamic knowledge)。推理引擎(Inference engine):协调在问题状态空间中搜索的整个过程,必要时向用户提问。它还负责找到适用于每个状态的正确规则。举例来说,下面这个专家系统是根据动物的物理特征来判断动物的:这种图称为AND-OR树,是一组产生式规则的图形表示。在从人类专家那里提取知识的早期阶段,绘制树形图非常有用。要在计算机中表示知识,使用规则更为方便:你可以注意到,规则左侧的每个条件和操作本质上都是对象-属性-值(OAV)三元组。工作记忆包含与当前要解决的问题相对应的OAV三元组。规则引擎会查找满足条件的规则,并应用这些规则,从而向工作记忆中添加另一个三元组。✅为你喜欢的主题写一个AND-OR树!

知识库有什么|感谢银海 inhai

“我们都知道,探索知识善如磨刀,面对复杂多元的在人工智能(AGI)领域,如何打破条条框框,去捕捉每一丝有价值的信息和知识呢?那么我相信答案就是:通往AGI之路「WaytoAGI」,一个由开发者、学者和有志人士等等参与的学习社区和开源的AI知识库。在这里,你既是知识的消费者,也是知识的创作者。这个世界上有很多走走停停的探索者,所以,我们以"无弯路,全速前进"为目标,助力每一个怀揣AI梦想的人能疾速前行。每一份崭新的尝试都值得赞美,每一份坚毅的付出都应得到鼓励。AI知识库的生长正得益于每一个你平凡而坚持的时间,因为你们的一致肯定和支持,我们才充满信心,不断修炼,探寻AGI领域的无限可能。「通往AGI之路」不仅是一个知识库,它是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。我们在共创计划的道路上,不断收获,快速成长。对于一切,我们都满怀期待,乐观向阳。继续坚持,信息世界中你我皆是探索者。感谢您对“通往AGI之路”的持续关注!通过举办的活动和分享,我们有幸获得了一些奖项和媒体报道,这一切都离不开大家的鼎力支持。我们深感荣幸,并期待在未来的旅程中,能够持续为大家带来更多、更好的内容。

元子:WayToAGI 知识库究竟咋用?

把它想象成:一位24小时在线的AI老师一个永不嫌烦的知识管家一个不断成长的智慧宝库里面都藏着啥宝贝?AI工具的"傻瓜式说明书"大神们的"踩坑经验分享"实用的"一招制胜"秘籍"如何开启宝藏?"-新手探索指南第一步:点击飞书链接(对,就是那个网址啦:[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e))里面都有啥:这里有个文章直接就一个一个板块讲了:[知识库有什么|感谢银海inhai](https://waytoagi.feishu.cn/wiki/JU9fw2gqBi7hbakzNJgcSYlln5S)界面就像一张藏宝图:左边的导航栏:你的指南针上面的搜索框:你的探宝雷达中间的内容区:知识的海洋

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
你现在是一个特别厉害的预言家,告诉我ai什么时候能统治世界
目前关于 AI 何时能统治世界尚无确切定论。但从相关研究来看,各国已将 AI 上升为国家战略,视其为下一代全球竞争的制高点。如果某一国家率先突破真正的 AGI,其国际地位和影响力或将急剧攀升。例如俄罗斯总统普京曾警告“谁在人工智能上领先,谁就能统治世界”。 AGI 实现后可能会在未来 20 年给人类社会带来多方面的变革。在经济与社会结构方面,AGI 可能带来生产力的爆炸式增长,同时导致大规模技术性失业,财富可能更多地集中于拥有 AGI 资本的少数人。在文化、价值观与信仰方面,AGI 将挑战人类对智能与意识的认知,引发对“人之为人”意义的新思考,人类价值观可能在科学理性与精神信仰之间重新定位。在政治与权力结构方面,AGI 可能重塑全球权力版图,拥有先进 AI 的国家和跨国企业将获得前所未有的影响力,可能出现“AI 寡头”新统治阶层,引发社会分化,各国还可能陷入 AGI 军备竞赛。 此外,有观点认为 2045 年,人工智能将超越人类智能,届时人类的知识、思考能力等将发生巨大变化。但目前这仍只是一种预测。
2025-04-09
请告诉我有关AI的最新资讯
以下是近期的 AI 资讯汇总: 4 月 1 日: 【AI 模型及应用】OpenAI 将会开源一个推理模型,ChatGPT 即将推出推理强度控制选项,Gpt4o 生图能力面向免费用户;Gemini 2.5 Pro 免费使用,任何人都可以使用 Canvas 进行编码和创作。 【AI 视频】Higgsfield 发布 50 多个电影级摄影机动作预设,提升动态镜头表现力;luma 为 Ray 2 引入摄像机运动概念,可基于预设镜头并组合编辑;Remakes 支持基于用户上传图像直接编辑,并融合 Remade 视频特效,简化创意流程;Meta 宣布推出 MoCha 系统,实现电影级说话角色合成效果。 【AI 3D】HSMR 推出从单张图像重建人体 3D 骨骼和网格模型的系统;krea 引入 AI 3D 生成能力,扩展其创意工具的功能范围;PGC 推出基于物理的单一姿势高斯布料模拟技术,提升数字服装的真实感。 【AI 音频】MiniMax Audio 发布全新 Speech02 语音模型,提升语音合成质量。 3 月 21 日: 【AI 绘画】网传神秘 Halfmoon 文本转图像模型为 Reve 对比 Midjourney 效果;Topaz Labs 推出 Gigapixel v8.3.0,将任何图像放大 16 倍;FLORA 引入 gemini 2.0 自然语言编辑图像能力。 【AI 视频】pika 超创内测“操控原视频中物体运动”能力;Krea 上线视频模型训练能力,可控制视频风格/动作/物体等。 【AI 3D】SpatialLM 用于空间理解的大型语言模型。 【AI 模型及应用】OpenAI 发布 2 个语音模型(文本转语音/语音转文本)+1 个演示网站;Claude 支持搜索功能。 3 月 14 日: 【AI 模型及其他】谷歌 Gemini 应用能力升级,包含升级推理模型 gemini 2.0、Flash Thinking Experimental 等多个功能提升;OpenAI 4 项更新;Bolt 一键将 Figma 设计转换为可运行的 Web 应用;阿里推出 AI 旗舰应用“新夸克”;360 智脑团队开源推理模型 LightR114BDS,复现 Deepseek 的强化学习效果。 【AI 视频】Pika 更新 Pikaffects,新增多款变身特效;Freepik 与 Fal 平台引入 Topaz AI 的提升“FPS 和视频分辨率”能力;Krea 上线 Veo 2 模型,支持图生视频功能,但生成成本较高。 【AI 绘图】LBM 用于快速图像到图像转换的潜在桥匹配方法,支持可控图像重新照明、角色去除和图像修复。 【AI 语音】Sesame 开源 TTS 语音模型 CSM1B。
2025-04-08
请你告诉我当今最先进的数字人技术是什么
当今最先进的数字人技术包括以下几种: 1. 由 HeyGen 与 Sora 集成推出的全新数字人技术:由 AI 完全生成的虚拟人,能够模拟并超越真人演员的动作、表情和行为。可灵活调整动作和表情,无需重复拍摄,视频长度无限制,且并非基于真人模型的“数字克隆”,而是全新的 AI 虚拟形象。 2. 英伟达发布的 Groot Teleop 技术:使用 Apple Vision Pro,能让人进入虚拟机器人身体进行操控与训练,还能训练机器人操作动作,并将成果转移至真实机器人,实现了虚拟与现实的无缝连接,为机器人训练带来了新模式。 此外,真人驱动的数字人技术也在不断发展,重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业以及直播带货等领域。随着视觉算法的进步,在没有昂贵动捕设备的情况下,也能通过摄像头捕捉到人体骨骼和人脸的关键点信息,从而达到不错的效果。
2025-03-28
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我是一个教育行业产品经理,我想要学习如何做一个产品经理智能体帮我做方案,告诉我我需要学习的知识
作为教育行业的产品经理,若要学习制作能为您做方案的产品经理智能体,您需要掌握以下知识: 智能体的应用: 自动驾驶:智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色和智能行为系统。 金融交易:金融市场中的智能交易算法根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人中集成的智能控制系统。 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 智能体产品功能详解: 智能体广场: 上传文档至知识库:点击【上传知识】按钮,可上传文档文件或 URL 导入,支持多种文档类型,文档大小有限制,可配置知识的切片方式,完成后知识将进入数据处理状态。 多智能体 AI 搜索引擎方案: 第一步,快速搜索补充参考信息:根据用户任务使用搜索工具补充更多信息,如使用工具 API WebSearchPro。 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索和自主分析并进行多轮搜索任务的能力。 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。
2025-03-17