以下是关于飞书知识库多维表与 DeepSeek 的相关信息:
《[最好的致敬是学习:DeepSeek-R1赏析](https://mp.weixin.qq.com/s/_XGBipbywCOtcKu13QDW5Q)》DeepSeek R1赏析分享会专为非技术人群设计,通俗易懂地介绍了R1和V3的技术亮点,深入探讨了业界的困惑与DeepSeek的解决方案。会议后半部分展望了未来LLM应用的新范式及产品可能性,并对流行谣言进行了澄清。正如作者潜云思绪所言:“最好的致敬是学习。”《[DeepSeek创新源于芯片封锁,Anthropic或成最大输家;美国不是通过创新竞争,而是通过封锁竞争](https://mp.weixin.qq.com/s/WiWTriENGR229S08BRFlSA)》DeepSeek的崛起源于芯片禁令,挑战了美国通过封锁而非创新竞争的思维。其V3模型以低至557.6万美元的训练成本实现了卓越的推理能力,利用“专家混合”和“多头潜在注意力”技术,展现了高效的算力利用。Ben Thompson警示,面对颠覆性技术,封闭策略只是暂时的,未来竞争需依赖开放与创新。《[喂饭级教程:飞书多维表格+DeepSeek=10倍速用AI](https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q)》这篇教程介绍了如何将飞书多维表格与DeepSeek R1结合,实现批量处理信息,提升工作效率。用户可以批量转换文风、快速回复消息,甚至利用AI生成文案,操作简单、便捷。值得注意的是,DeepSeek让普通人无需编程知识也能轻松使用AI。
[heading2]总结关于DP模型的使用分享DP模型的功能:能进行自然语言理解与分析、编程、绘图,如SVG、MA Max图表、react图表等。使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。审核方法:可以用其他大模型来解读DP模型给出的内容。使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景:包括阅读、育儿、写作、随意交流等方面。案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示DP模型的应用。关于音系学和与大模型互动的分享音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如bug和DIFF SIG,探讨语言概念在音系学下的心理印象等。大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。关于Deepseek的介绍与活动预告Deepseek文档分享:在3群和4群分享了Deepseek的相关文档,也可在v to a gi的飞书知识库中搜索获取。Deepseek使用介绍:介绍了Deepseek的模型、收录内容、提示词使用技巧和好玩的案例等。未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入Deepseek。
《[最好的致敬是学习:DeepSeek-R1赏析](https://mp.weixin.qq.com/s/_XGBipbywCOtcKu13QDW5Q)》DeepSeek R1赏析分享会专为非技术人群设计,通俗易懂地介绍了R1和V3的技术亮点,深入探讨了业界的困惑与DeepSeek的解决方案。会议后半部分展望了未来LLM应用的新范式及产品可能性,并对流行谣言进行了澄清。正如作者潜云思绪所言:“最好的致敬是学习。”《[DeepSeek创新源于芯片封锁,Anthropic或成最大输家;美国不是通过创新竞争,而是通过封锁竞争](https://mp.weixin.qq.com/s/WiWTriENGR229S08BRFlSA)》DeepSeek的崛起源于芯片禁令,挑战了美国通过封锁而非创新竞争的思维。其V3模型以低至557.6万美元的训练成本实现了卓越的推理能力,利用“专家混合”和“多头潜在注意力”技术,展现了高效的算力利用。Ben Thompson警示,面对颠覆性技术,封闭策略只是暂时的,未来竞争需依赖开放与创新。《[喂饭级教程:飞书多维表格+DeepSeek=10倍速用AI](https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q)》这篇教程介绍了如何将飞书多维表格与DeepSeek R1结合,实现批量处理信息,提升工作效率。用户可以批量转换文风、快速回复消息,甚至利用AI生成文案,操作简单、便捷。值得注意的是,DeepSeek让普通人无需编程知识也能轻松使用AI。