Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么支持多模态输入和输出的C端产品

Answer

以下是一些支持多模态输入和输出的 C 端产品:

  1. 宝玉日报:支持文本或音频输入,输出可为文本、音频或混合数据。价格方面,1 小时音频输入成本为$12.8,输出为$25.6。相关链接:https://platform.openai.com/docs/guides/audiohttps://x.com/dotey/status/1847100400664494186
  2. Imagic 发布的 AI 驱动的无代码应用构建工具:支持多模态输入输出,包括文本、图片、3D 和视频。创建出来的应用立刻就能使用和发布。相关链接:https://get.imagica.ai/s
  3. 面壁智能推出的 MiniCPM-o 2.6:具有多模态能力,如 OCR、视频理解、连续视频与音频流处理,实时直播与多模态上下文理解,支持 30 多种语言的文本和语音输入输出。资源链接:原推文GitHub在线体验模型下载
  4. 世界首个支持手持产品展示的 AI 数字人 Product Avatar:上传产品图片,数字人即可手持产品进行口播展示,支持多语言,覆盖 28 种语言,可快速生成产品宣传视频。相关链接:在线体验原推文
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

多模态支持:文本或音频输入,输出可为文本、音频或混合数据。异步语音交互:适合不需要实时反馈的场景,支持情感分析及语调识别。价格说明:1小时音频输入成本为$12.8,输出为$25.6。?[https://platform.openai.com/docs/guides/audio](https://platform.openai.com/docs/guides/audio)?[https://x.com/dotey/status/1847100400664494186](https://x.com/dotey/status/1847100400664494186)4⃣️?Colibri火箭成功飞行至105米,学生项目挑战太空边界Gruyère Space Program(GSP)完成欧洲首个学生自主研发的可重复使用火箭自由飞行。火箭采用双组元推进剂发动机,实现垂直起飞和降落(VTVL)。该项目在25万瑞士法郎的预算内完成,展示了学生团队的创新和合作能力。?[https://gruyerespaceprogram.ch](https://gruyerespaceprogram.ch)?[https://x.com/dotey/status/1847096363571728654](https://x.com/dotey/status/1847096363571728654)5⃣️?️LangChain团队推出Open Canvas:开源版Canvas工具

AIGC Weekly #16

这个产品有点离谱的。宣传视频和官网太好看了。用自然语言快速生成可以使用的应用程序。支持Airtable等产品直接当作数据库使用。支持多模态输入输出,包括文本、图片3D和视频。创建出来的应用立刻就能使用和发布。宣传视频演示了比如股票应用和一些企业B端后台等。[heading2][Create:在几分钟内获得自动设计、构建和部署的Web应用程序](https://www.[content]在20周内完成10周的项目,以便更快地进入市场。与没有代码或低代码不同,创作者构建自定义用户体验,您拥有最终代码库。快速生成产品的第一个版本。然后,由创建者加速路线图的其余部分,为所有常见功能请求(如UI组件、GraphQL解析器等)提供生成器。[heading2][月维推出的提示词生成工具](https://github.com/Moonvy/OpenPromp[content]一个开源的AIGC(Midjourney)提示词可视化编辑小工具支持:显示英文提示词的中文翻译、输入中文提示词翻译到英文、为提示词进行分类(普通、样式、质量、命令)、轻松的排序、隐藏提示词、把提示词可视化结果导出为图片、常用提示词词典。[heading2][Apollo:一款基于ChatGPT的实时知识应用程序](https://twitter.co[content]通过耳机整天与它交谈。如果增强现实是对世界的叠加,这就是增强智能——对你思想的叠加。

1月15日 社区动态速览

1⃣️?面壁智能推出MiniCPM-o 2.6亮点:8B大小,性能媲美GPT-4o级别,可在移动设备上运行。视觉能力:超越GPT-4o-202405、Gemini 1.5 Pro和Claude 3.5 Sonnet。功能:中英双语实时语音对话,支持情感、速度、风格控制,端到端语音克隆与角色扮演。多模态能力:OCR、视频理解、连续视频与音频流处理,实时直播与多模态上下文理解。多语言支持:覆盖30+种语言的文本和语音输入输出。资源链接:[原推文](https://x.com/imxiaohu/status/1879164082223534430)[GitHub](https://github.com/OpenBMB/MiniCPM-o)[在线体验](https://minicpm-omni-webdemo-us.modelbest.cn/?type=0)[模型下载](https://huggingface.co/openbmb/MiniCPM-o-2_6)2⃣️?️世界首个支持手持产品展示的AI数字人:Product Avatar功能特点:无需真人模特:上传产品图片,数字人即可手持产品进行口播展示。细节定制:语音和口型同步,动作、姿势可定制,支持1000+多国家数字人模特。多语言支持:覆盖28+种语言,可快速生成产品宣传视频。测试效果:视频效果接近成熟,嘴型部分需进一步优化。资源链接:[在线体验](https://topview.ai/ai-product-avatar)[原推文](https://x.com/imxiaohu/status/1879146338144932195)

Others are asking
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
多模态是什么,
多模态指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。 随着生成式 AI 和大模型的发展,我们逐渐进入多模态灵活转换的新时代,即能用 AI 实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换,这一变革依靠一系列革新性的算法。 在感知不同模态数据时,AI 借助高维向量空间来理解,不再局限于传统的单一模态处理方式,将图像或文字“压缩”成抽象的向量,捕捉深层关系。 Gemini 模型本身就是多模态的,展示了无缝结合跨模态的能力,在识别输入细节、聚合上下文以及在不同模态上应用等方面表现出强大性能。
2025-04-13
多模态Agent最新动态
以下是关于多模态 Agent 的最新动态: 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 近期,生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。 从 2022 年 11 月 18 日到 2023 年 7 月 26 日,多模态 Agents 迅速增长。 LLM 多模态 agent 是将现有技术融合的新尝试,是一种集成了多种模态数据处理能力的 AI 技术。 优点:高度的灵活性和扩展性,可根据不同任务需求调用最合适的模型处理任务,适应多样化任务和数据类型,优化资源使用,提升效率;无需训练,系统开发周期快,成本低。 局限性:调试和工程化难度较高,维护和升级成本高;多个组件紧密耦合,单点故障可能导致整个系统风险增加;没有涌现出新的能力。 适用场景:需要综合处理视频、语音和文本等多种信息的复杂环境,如自动驾驶汽车;高度交互和灵活的用户界面,如客户服务机器人或交互式娱乐应用。 《2024 年度 AI 十大趋势报告》 随着大模型对图像和视频信息的处理能力快速提升,预计 2025 年将开始出现更为综合性的多模态交互,AI 能够通过物联网、特定信息等多种感知通道进行协同。 多模态输入和输出使 AI 交互性更强、交互频次更高,适用场景也更加丰富,AI 产品整体水平显著提升。 Agent 作为融合感知、分析、决策和执行能力的智能体,能够根据用户历史行为和偏好,主动提供建议、提醒并个性化执行能力,为用户提供高度个性化的任务。从 2025 年开始,AI Agent 即将广泛投入使用。 从个性化推荐到直接生成个性化内容,AIGC 能够使用户体验的个性化程度有明显提升,这将帮助产品进一步完善用户体验,并通过提高用户忠诚度和迁移成本,实现差异化定价和进一步的服务增值,对产品的差异化竞争有重大意义。目前,基于 AIGC 的高度个性化已经在 AI 教育、AI 陪伴、AI 营销领域有明显进展。在硬件端搭载的多款 AI 智能助手也已开始以高度个性的个人助理作为宣传重点。
2025-03-31
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
如何构建多模态知识库?
构建多模态知识库可以参考以下步骤: 1. 图像知识库方面:通过多模态的能力对图片信息进行检索理解。效果测试时,上传一张图片,在图像数据库里找到相关信息,然后结合内容进行回复。 2. 构建图片索引: 新建结构化数据表时,将图片索引所在列的字段类型设置为 link。需注意新建数据表后,无法再新增或修改字段类型为 link。 创建结构化知识库时,对于需要建立图片索引的 link 类型字段,在旁边的下拉列表中选择图片。创建知识库后,无法再新建或修改图片索引。 3. 多模态知识库还包括构建图片型索引需结构化数据表,字段类型设置为 link,以实现 FAQ 中向用户推送图片信息。
2025-03-19
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
AI输入法
以下是关于 AI 输入法的相关信息: 在 Cursor 的 AI 输入框中,如 Cmd K、Chat 或终端 Cmd K,您可以通过键入@来使用@符号。会出现带有建议列表的弹出菜单,并自动过滤显示基于输入的最相关建议。您可以使用向上/向下箭头键浏览建议列表,按 Enter 键选择建议。若建议是类别,如 Files,建议将被筛选为仅显示该类别中最相关的项目。 《ShowMeAI 周刊 No.14》提到了五花八门的 AI 输入法应用,以及 AI 输入法是上周有讨论度的话题之一。 在 AI 输入框中,如 Cursor Chat 和 Cmd K,可以使用@Files 引用整个文件。继续在@后键入,将在策略之后看到文件搜索结果。为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性重新排序。
2025-04-11
输入文本就可以输出视频的免费AI工具
以下是一些输入文本就可以输出视频的免费 AI 工具: 1. Stuart:实践中采用了 GPTSoVITS 和 BertVITS2 两个开源模型,项目免费且好用。可直接找到需要的音色,输入文字,点击“合成语音”生成后就能下载。 GPTSoVITS 在线一键语音生成合集:https://www.modelscope.cn/studios/xzjosh/GPTSoVITS/summary BertVITS2 在线一键语音生成合集:https://www.modelscope.cn/studios/xzjosh/BertVITS2/summary 2. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频。它是由 Stability AI 开源的 video model。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-09
输入文本,生成视频
以下是关于输入文本生成视频的相关内容: 使用 Adobe Firefly 生成视频: 1. 在上,选择“生成视频”。 2. 在 Generate video 页面上,在 Prompt 字段中输入文本提示,您还可以使用 Upload 选项在 Image 部分上传图像用于第一帧,并为视频剪辑提供方向参考。 3. 在 General settings 部分,确定 Aspect ratio 和 Frames per second。 4. 在 Advanced 部分,可使用 Seed 选项添加种子编号来控制 AI 创建内容的随机性。 使用 Pika Labs 生成视频: 1. 加入 Pika Labs 的 Discord 频道:在浏览器中打开链接,点击加入邀请 https://discord.gg/dmtmQVKEgt 。 2. 在 generate 区生成:左边栏出现一只狐狸的头像就意味着操作成功了,如果没成功点开头像把机器人邀请至服务器。接着在 Discord 频道的左侧,找到“generate”子区,随便选择一个进入。 3. 生成视频: 输入指令生成:输入/create,在弹出的 prompt 文本框内输入描述,比如/create prompt:future war,4K ar 16:9,按 Enter 发送出去就能生成视频。 本地图片生成:输入/create,在弹出的 prompt 文本框内输入描述,点击“增加”上传本地图片,就能让指定图片生成对应指令动态效果。 4. 喜欢的效果直接右上角点击下载保存到本地。如果对生成的视频不满意,如图像清晰度不够高或场景切换不够流畅等,可以点击再次生成按钮,系统会进一步优化生成的效果。 Pika Labs 被网友评价为目前全球最好用的文本生成视频 AI,其生成服务和 midjourney 一样,都托管在 discord 中,目前内测免费。
2025-04-09
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
计算两个时间差的绝对值,输出相差的完整天数。 获得用户输入的两个与时间相关的字符串,两个时间用逗号分隔,每个时间字符串格式示例如下:2018年08月01日17点21分21秒。 以此为要求写出python代码
以下是计算两个指定格式时间差的绝对值并输出相差完整天数的 Python 代码: ```python import datetime def calculate_days_difference: 解析时间字符串 time1 = datetime.datetime.strptime time2 = datetime.datetime.strptime 计算时间差 time_difference = abs 转换为天数并返回 return time_difference.days 示例用法 time1_str = "2023年08月01日17点21分21秒" time2_str = "2023年08月10日17点21分21秒" print ```
2025-03-22
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
有哪些支持超长上下文的大模型
以下是一些支持超长上下文的大模型: Scout:支持 1000 万上下文,适合处理超长文本和复杂推理任务。 Maverick:具有 100 万上下文,长记忆优势适配多场景替代 RAG。 Behemoth:2 万亿参数级别的大模型在训,已超越 GPT4.5 在 STEM 表现。 Claude2100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入不能超过规定的 token 数量,而且随着对话的进行,当达到上限时,会遗忘最前面的对话内容。
2025-04-08
生成设计图:包括图书馆静音舱+小组讨论舱 :用隔音板材划分独立空间,舱体外壳由学生绘制抽象艺术图案。 可变形桌椅 :定制模块化桌椅,支持拼合为“创作大桌”或独立卡座,适配小组作业与个人学习。 艺术疗愈角 :设置减压涂鸦墙、小型绿植温室,配备舒缓音乐耳机。
以下是为您提供的关于生成您所需设计图的相关信息: 星流一站式 AI 设计工具具有入门模式和高级模式。 入门模式: 可以使用图像控制功能精准控制生成图像的内容和风格,如空间关系、线稿、人物长相、姿势等。 只能使用以下四种参考功能: 全部图片参考功能,包括原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割等。 原图、SoftEdge 线稿、配色参考、配色打乱、法线贴图、MLSD 线稿等。 高级模式: 点击生成器下方的切换按钮进行切换。 与入门模式相比增加了高级模式框架。 基础模型方面,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5。 图片参考方面,允许使用更多的图像控制功能,在星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法会影响图像放大后的图像质量,建议默认即可。 重绘幅度与初步生成的图像的相似度有关。 其他参数默认即可,参数方面允许调整更多的高级参数。 采样器方面,采样方法决定了模型在生成图像过程中的出图质量,有些采样器在细节处理上表现更佳比如 DPM++2M,而有些则在生成速度上更快,比如 Euler。 采样步数一般来说,步数越多,模型对图像的生成和优化越充分,但同时也会增加生成时间。 随机种子是文生图的随机数种子,通过设置相同的随机数种子,可以确保在相同的参数配置下生成相同的图像。 CFG Scale 控制生成图像与提示词一致性的重要参数。 具有脸部/手部修复功能,利用算法对人像的脸部或者手部进行修复。 此外,学生使用项目化的方式分析现状,做问卷调查,数据分析,在 ChatGPT 的帮助下设计出优化过的设计图,然后使用 3D 的空间设计软件设计出来 3D 的设计图。比如有孩子为优化老师家访路线提出做一个软件产品的案例。
2025-03-23
支持Mac的AI助手,能支持自定义大模型和智能体
以下是为您提供的支持 Mac 且能支持自定义大模型和智能体的 AI 助手相关信息: 在网站上增加一个 AI 助手: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 1. Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 2. 它提供了模型库,用户可从中下载不同模型,也支持自定义模型,例如修改模型的温度参数或设置特定系统消息,还提供了 REST API 用于运行和管理模型以及与其他应用程序的集成选项。 3. Ollama 社区贡献丰富,有多种集成插件和界面。安装时访问 https://ollama.com/download/ ,安装完后在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认。 智能体应用的相关介绍: 大模型存在无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等局限性,为提升用户体验和增强业务竞争力,越来越多的企业构建 AI 助手。智能体应用基于大模型,通过集成特定的外部能力弥补不足,适用于有企业官网等渠道期望提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-03-23
请问哪个平台支持上传私人知识库文件
以下平台支持上传私人知识库文件: 本地文档: 文本内容: 支持格式:.txt、.pdf、.docx。 操作步骤:在文本格式页签下选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。每个文件不得大于 20M,一次最多可上传 10 个文件。上传完成后选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度、设置文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址),最后单击下一步完成内容上传和分片。 表格数据: 支持格式:.csv 和.xlsx。 操作步骤:在表格格式页签下选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。每个文件不得大于 20M,一次最多可上传 10 个文件。配置数据表信息,包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取表头的列名,可自定义修改列名或删除某一列名)、指定语义匹配字段(选择作为搜索匹配的语义字段)。查看表结构和数据,确认无误后单击下一步,完成上传后单击确定。 Notion: 操作步骤:在文本格式页签下选择 Notion,然后单击下一步。单击授权,首次导入 Notion 数据和页面时需要进行授权。在弹出的页面完成登录,并选择要导入的页面。选择要导入的数据,然后单击下一步。选择内容分段方式,包括自动分段与清洗和自定义,最后单击下一步完成内容上传和分片。 自定义: 操作步骤:在文本格式页签下选择自定义,然后单击下一步。输入单元名称,然后单击确认。单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加 2000 个字符。单击保存。
2025-03-18