直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

关于Deepseek计费模式和标准是怎样的

回答

DeepSeek 的计费模式和标准如下:

  • DeepSeek 暂停了 API 充值服务,已充值金额可继续使用。
  • DeepSeek-chat 模型优惠期至 2025 年 2 月 8 日 24:00,之后按每百万输入 tokens 2 元,每百万输出 tokens 8 元计费。
  • Deepseek-reasoner 模型上线即按每百万输入 tokens 4 元,每百万输出 tokens 16 元计费。

相关链接:[https://x.com/imxiaohu/status/1887474172487737520]

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

XiaoHu.AI日报

?Xiaohu.AI日报「2月6日」✨✨✨✨✨✨✨✨1⃣️?DeepSeek暂停API充值服务服务器资源紧张,官方宣布暂停API充值,已充值金额可继续使用。DeepSeek-chat模型优惠期至2025年2月8日24:00,之后按每百万输入tokens 2元,每百万输出tokens 8元计费。Deepseek-reasoner模型上线即按每百万输入tokens 4元,每百万输出tokens 16元计费。?[https://x.com/imxiaohu/status/1887474172487737520](https://x.com/imxiaohu/status/1887474172487737520)2⃣️⚠️Google修改AI伦理原则,允许军事用途2018年AI原则承诺不开发武器、不支持监控、不参与违反人权的AI项目。最新修改:删除这些承诺,改为“适当的人工监督和社会责任”。可能原因:AI发展迅速,旧规则已过时。地缘政治压力下,美中AI竞争加剧。商业竞争使Google不愿落后于微软、OpenAI等。官方声明:Google领导层强调AI需服务民主国家,并兼顾国家安全。外界质疑:此举被认为是出于商业利益,放弃AI伦理承诺。?详细内容:[https://www.xiaohu.ai/c/xiaohu-ai/google-ai](https://www.xiaohu.ai/c/xiaohu-ai/google-ai)3⃣️?斯坦福&华盛顿大学推出低成本AI训练方法S1

XiaoHu.AI日报

?Xiaohu.AI日报「2月6日」✨✨✨✨✨✨✨✨1⃣️?DeepSeek暂停API充值服务服务器资源紧张,官方宣布暂停API充值,已充值金额可继续使用。DeepSeek-chat模型优惠期至2025年2月8日24:00,之后按每百万输入tokens 2元,每百万输出tokens 8元计费。Deepseek-reasoner模型上线即按每百万输入tokens 4元,每百万输出tokens 16元计费。?[https://x.com/imxiaohu/status/1887474172487737520](https://x.com/imxiaohu/status/1887474172487737520)2⃣️⚠️Google修改AI伦理原则,允许军事用途2018年AI原则承诺不开发武器、不支持监控、不参与违反人权的AI项目。最新修改:删除这些承诺,改为“适当的人工监督和社会责任”。可能原因:AI发展迅速,旧规则已过时。地缘政治压力下,美中AI竞争加剧。商业竞争使Google不愿落后于微软、OpenAI等。官方声明:Google领导层强调AI需服务民主国家,并兼顾国家安全。外界质疑:此举被认为是出于商业利益,放弃AI伦理承诺。?详细内容:[https://www.xiaohu.ai/c/xiaohu-ai/google-ai](https://www.xiaohu.ai/c/xiaohu-ai/google-ai)3⃣️?斯坦福&华盛顿大学推出低成本AI训练方法S1

2月7日 社区动态速览

1⃣️?DeepSeek暂停API充值服务由于资源紧张,暂停API充值,已充值金额继续有效。DeepSeek-chat模型计费调整:每百万tokens 2元(输入)、8元(输出)。DeepSeek-reasoner模型计费:每百万tokens 4元(输入)、16元(输出)。?[链接](https://x.com/imxiaohu/status/1887474172487737520)2⃣️⚠️Google修改AI伦理原则,允许军事用途删除禁止开发武器、支持监控等承诺,改为强调“适当的人工监督和社会责任”。可能因AI发展、地缘政治压力及商业竞争所致。?[详细内容](https://www.xiaohu.ai/c/xiaohu-ai/google-ai)3⃣️?斯坦福&华盛顿大学推出低成本AI训练方法S1仅用6美元即可达到OpenAI o1-preview级别推理能力。使用“Wait”机制和小量数据,降低训练成本。?[详细内容](https://xiaohu.ai/c/ai/s1-simple-test-time-scaling-1000-6-openai-o1-deepseek-r1-2cfec2a9-8c52-4692-86f0-5339700c6582)?[论文](https://arxiv.org/pdf/2501.19393)4⃣️?Google推出Gemini 2.0新模型

其他人在问
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
AI对商业模式的变革影响
AI 对商业模式的变革影响主要体现在以下几个方面: 1. 生物技术与 AI 的融合:生物技术的工业化带来新规模和新应用,AI 在其中发挥变革性作用,但在某些完全依赖摩尔定律的领域,其对商业模式的贡献可能被过分炒作。 2. 从通用能力到专业化细分:早期通用型 AI 产品难以满足多样化需求,如今越来越多的 AI 产品专注于特定领域,如图像生成、视频制作、音频处理等,不断提升核心能力,提供更精准和高质量的服务。 3. 商业模式的探索与创新:包括 ToB 市场的深耕,如针对内容创作者的 ReadPo;新型广告模式,如天宫搜索的“宝典彩页”等,从单纯的技术展示向解决用户痛点和创造商业价值转变。 4. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。 5. To AI 的商业模式:如模型市场、合成数据、模型工程平台、模型安全等可能更确定。
2025-04-01
吴恩达总结了四种AI Agent的设计模式: 1.反思模式(Reflection): 2.工具使用模式: 3.规划模式: 4.多智能体协作模式:
吴恩达总结了以下四种 AI Agent 的设计模式: 1. 反思模式(Reflection):让 Agent 审视和修正自己生成的输出。例如,在编写代码时,可让大模型检查代码的准确性和结构规范性,并不断优化。 2. 工具使用模式(Tool Use):通过使用外部工具和资源,如 LLM 生成代码、调用 API 等进行实际操作。 3. 规划模式(Planning):让 Agent 分解复杂任务并按计划执行。 4. 多智能体协作模式(Multiagent Collaboration):多个 Agent 扮演不同角色合作完成任务。 如果您想更深入了解这些设计模式,可以参考以下文章:https://waytoagi.feishu.cn/wiki/SPNqwJkmQiyVfGkS8zocMSZcnYd
2025-03-19
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
trae ai编程客户端的buide模式“客户端异常,请稍后再试”
Trae 的 Builder 模式相关信息如下: Trae 提供了两种模式,其中 Builder 模式可以帮助从 0 开发一个完整的项目,对代码文件的任何更改都会自动保存。 使用 Builder 模式的步骤: 在电脑上新建一个文件夹,文件夹名字可自定义,如“helloworld”。 使用 Trae 打开这个文件夹,在弹出的弹层里选中新建的文件夹。 点击右上角的“Builder”按钮切换到 Builder 模式。 在 Builder 模式下的使用案例,如生成一个贪吃蛇游戏:打开 Builder 模式,直接输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写过程,期间需要手动接入进行文件审查,在提示中点击“全部接受”。代码生成完成之后,Trae 自动运行命令启动页面,点击运行,在 Webview 中即可看到实现的游戏效果。 如果您在使用 Trae 的 Builder 模式时出现“客户端异常,请稍后再试”的提示,建议您稍后再尝试操作,或者检查网络连接等是否正常。
2025-03-10
怎么用AI标准化批量生产内容
以下是关于如何用 AI 标准化批量生产内容的详细指导: 一、需求分析 在批量制作单词卡片时,为降低人工成本和节约时间,选用搞定设计来批量产图。因为其对新手友好,且借助 AI 加成模板容易制作。 二、提示词编写测试 1. 完整提示词:核心是生成符合要求的单词卡内容并将其填入 Excel 文件中,需给出基本示例和规则限制。 2. 测试结果:一次输入多个单词可同时解析,虽效果有差异但大体格式符合要求,部分设定有改变,可通过复制粘贴调整。 三、批量产出 1. 准备压缩格式的文件(如 zip、rar、7z),内含放置内容的 Excel 文档,格式固定。 2. 利用 ChatGPT 生成单词内容并整理填入 Excel。 3. 上传压缩文件,完成套版,获得符合要求的单词卡片。 此外,在测试 AI 视频产品模型 txt2vid、img2vid 能力时,撰写提示词通常基于特定结构,也可让 Claude 等大模型协助,参考“我正在测试 Runway、Luma 等视频生成产品对文本的语义理解能力和视频生成效果,现在需要你帮我写几段提示词。提示词需要满足:主体物+场景+运动内容+相机视角+氛围描述的基本内容描写,请分别给出中英文提示词内容。”今年 AI 技术进步迅速,图像、视频生成主要解决素材生产问题,各产品在数据集、模型能力等方面竞争,AI 功能的打磨需要团队多方面精心投入,对使用者综合能力要求高。
2025-04-09
我需要ai帮助我根据我的大纲生成一篇标准的论文
以下是为您根据大纲生成标准论文的一些建议和参考: 首先,确定论文大纲目录。您可以参考老师提供的示例报告,或者通过手机识别相关截图来获取。 其次,明确整体的语言风格和特色。调研报告通常要求“逻辑清晰、层层递进、条理分明”,您可以将范文提供给类似 Claude 2 的工具来总结语言风格,但注意不要过度限制 AI 的生成,以免影响效果。 然后,让 GPT4 按照目录逐步生成章节内容。可以在 workflow 中设置循环结构,在其生成一段章节内容后,您确认同意再进行下一章节,否则重新生成。在生成内容前,让 GPT4 判断某章节是否需要调用 webpolit 插件查询相关信息。对于需要搜索网络信息的章节,可以打上标签,让 GPT4 自主搜索信息后生成内容。 在写作过程中,您还可以利用以下常见的文章润色 AI 工具来提高论文质量: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,帮助优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 总之,生成论文需要综合运用各种方法和工具,根据自身需求选择合适的方式,不断优化和完善,以达到标准论文的要求。
2025-03-29
有没有软件开发过程中辅助标准开发的AI
以下是一些在软件开发过程中辅助标准开发的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助提高编写代码的效率。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手,基于自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 在面试时,可以通过以下 AI 相关问题快速判断候选人是否真正懂 AI: 1. “你遇到过 AI 给出明显错误答案的情况吗?你是怎么处理的?” 2. “最近有没有新出的 AI 工具或功能是你学习并实际应用的?能举个例子吗?” 3. “如果 AI 生成的内容和你的预期不符,你会怎么优化它?” 4. “你觉得 AI 目前有哪些无法解决的业务难题?遇到这些问题你会怎么做?” 未来软件开发人员的角色可能会发生变化,需要掌握跨学科的技能,不仅要知道构建什么,也要评估 AI 生成的代码,从主要的代码编写者转变为主要的任务委托者和代码审查者。同时,模型和模型基础设施需要更好地从代码库和代码审查中学习,以生成更符合公司代码规范的代码。
2025-03-20
我希望通过ai做好我企业内部的智能巡检。巡检内容主要是针对企业的门店的招牌门头是否合规给出意见。主要合规性检查包括:Logo是否符合公司的设计标准;门头的颜色搭配、尺寸是否符合标准(还要提醒褪色),请问大体应该是各什么思路?
很抱歉,飞书知识库中没有与您关于通过 AI 做好企业内部门店招牌门头智能巡检思路的直接相关内容。但一般来说,您可以考虑以下思路: 1. 数据采集:使用图像采集设备获取门店招牌门头的图像数据。 2. 图像识别技术:运用 AI 的图像识别能力,对采集到的图像进行分析,识别 Logo、颜色、尺寸等元素。 3. 建立标准模型:根据公司设计的标准,建立合规性的模型,以便与采集到的图像进行对比。 4. 智能判断:通过算法判断门头的各项元素是否符合标准,包括 Logo 是否与标准一致,颜色搭配、尺寸是否在规定范围内,以及是否存在褪色等问题。 5. 生成报告和提醒:根据判断结果生成详细的报告,并及时提醒相关人员进行整改。
2025-02-25
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
标准曲线 回归线斜率 线性什么关系
标准曲线和回归线在统计学和数据分析中密切相关。标准曲线通常用于描述自变量和因变量之间的定量关系,而回归线则是通过对数据点进行拟合得到的一条直线,用于表示这种关系的趋势。 斜率在线性关系中是一个关键参数。对于线性关系而言,斜率表示因变量随自变量变化的速率。在标准曲线和回归线中,斜率反映了变量之间变化的比例关系。 如果标准曲线或回归线呈现线性,那么斜率能够定量地描述这种线性关系的特征。斜率的大小和正负决定了线性关系的方向和强度。 总之,标准曲线、回归线和斜率在线性关系的描述和分析中相互关联,共同帮助我们理解和解释变量之间的关系。
2025-01-10