Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人类接收外界信息的感官中,视觉占比高达83%,听觉占11%,其余触觉、嗅觉、味觉合计仅占6%。如何采用用AI画出图示呢

Answer

以下为您提供采用 AI 画出关于人类接收外界信息感官占比图示的相关指导:

首先,您可以选择合适的 AI 绘图工具,如 Creately、Whimsical 或 Miro 等。

Creately 是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,能自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作。官网:https://creately.com/

Whimsical 是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。其具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能。官网:https://whimsical.com/

Miro 是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/

使用这些工具绘制图示的一般步骤如下:

  1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。
  2. 创建账户:注册并登录该平台。
  3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。
  4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。
  5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
Content generated by AI large model, please carefully verify (powered by aily)

References

余欣航heaven:人类一败涂地?

“对。碳基生物就是所有含碳有机化合物构成的生物,包括所有动物、植物,也包括全人类。包含了你我和全人类在内的碳基生物,注定会输给集成了AI的硅基生物!”“可、可是……”“没有什么可是了。”他耸了耸肩,“所有工作,包括全人类所做的所有事情,不分有没有所谓的创造性,也不管你觉得这是否独特,全部、一个不落,都会被AI所取代!未来,地球不再需要碳基生物;未来,地球是硅基生物的天下!”他的这番话让我非常震惊,久久不能说出话来。一方面,这番话似乎站在了整个人类的对立面,让我“政治正确”的本能忍不住开口驳斥;但另一方面,丁一在美国硅谷工作,他比我更懂技术,也更了解这个行业的情况。所以,在开口反驳之前,我总难免要问自己,我所能做出的反驳、我所谋求的“正确”,是否只是源于自己的无知?“碳基生物的时代……结束了!”在我思考的时候,他还在念念不休。我深吸一口气,冷静下来,听丁一细说其中缘由。丁一说:首先,AI认识事物比人类更清晰、准确,也更全面,这是毋庸置疑的。我问:所谓的“事物”不一定能用数字表示、并且存在硅基的芯片里吧。我们人类可以认识复杂的情感、抽象的概念与意义……丁一反问:你认识到的所有事物、所有信息,归根结底来自于哪些源头?我回答:应该是感官吧——视觉、听觉、嗅觉、味觉和广泛的触觉……丁一追问:那你觉得,五种感官中,有哪一种不能被表示为数字?

AI 数字人-定义数字世界中的你

有了数字人躯壳,我们就需要构建数字人的灵魂,让数字人具备各种智能,比如记得你的个人信息,充当你的个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。这些能力实现有以下几个需要注意的工程关键点:1.AI Agent:我们要想数字人像人一样思考就需要写一个像人一样的Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战;2.驱动躯壳的实现:灵魂部分怎样去驱动躯壳部分,我们可以将灵魂部分的所有接口定义出来,然后躯壳部分通过API调用,调用方式可以是HTTP、webSocket等等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考Nvidia的Audio2Face(https://www.nvidia.cn/omniverse/apps/audio2face/)或则Live Link Face(Iphone APP)+Face AR Sample(UE);3.实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。4.多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉我们可以通过添加摄像头数据来获取数据,再通过系列CV算法做图像解析等;5.拟人化场景:我们正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景如何通过工程丝滑处理。

问:AI 画示意图

简介:Creately是一个在线绘图和协作平台,利用AI功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。功能:智能绘图功能,可以自动连接和排列图形。丰富的模板库和预定义形状。实时协作功能,适合团队使用。官网:[Creately](https://creately.com/)[heading3]5.Whimsical[content]简介:Whimsical是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。功能:直观的用户界面,易于上手。支持拖放操作,快速绘制和修改图表。提供多种协作功能,适合团队工作。官网:[Whimsical](https://whimsical.com/)[heading3]6.Miro[content]简介:Miro是一个在线白板平台,结合AI功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。功能:无缝协作,支持远程团队实时编辑。丰富的图表模板和工具。支持与其他项目管理工具(如Jira、Trello)集成。官网:[Miro](https://miro.com/)[heading3]使用AI绘制示意图的步骤[content]1.选择工具:根据你的具体需求选择合适的AI绘图工具。2.创建账户:注册并登录该平台。3.选择模板:利用平台提供的模板库,选择一个适合你需求的模板。4.添加内容:根据你的需求,添加并编辑图形和文字。利用AI自动布局功能优化图表布局。5.协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。

Others are asking
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
告诉我211本科人工智能毕业一志愿考研结果不理想,很可能被调剂到一个双非院校,请给我在就业方面一个合适的方向(包括但不限于大学老师、大厂、中小厂、国企、考公考编、选调生等)
对于 211 本科人工智能专业毕业,考研一志愿结果不理想可能被调剂到双非院校的情况,在就业方面可以有以下几个方向: 大学老师:如果您有继续深造的意愿,在研究生阶段取得优异成果,未来仍有机会进入高校任教,但可能相对较难进入重点高校。 大厂:大厂通常对学历和能力都有较高要求。虽然您的研究生院校可能是双非,但如果在研究生期间积累丰富的项目经验、具备扎实的专业技能,仍有机会进入大厂。 中小厂:中小厂对于学历的要求相对宽松,更注重实际能力。您可以在中小厂获得更多实践机会,积累工作经验,为未来的职业发展打下基础。 国企:国企的稳定性较高,对于学历的要求也相对灵活。您可以关注国企的招聘信息,寻找与人工智能相关的岗位。 考公考编:公务员和事业单位的工作稳定性强,一些与科技、信息化相关的部门可能会招聘人工智能专业的人才。 选调生:如果您符合选调生的选拔条件,可以尝试通过选调生途径进入政府部门工作。 总之,无论选择哪个方向,都需要在研究生期间不断提升自己的专业能力和综合素质,增加就业竞争力。
2025-03-03
11月到12月AI领域的发展情况
在过去的 11 月到 12 月期间,AI 领域呈现出以下发展情况: 流量增长:在过去 12 个月里,人工智能行业是重要的技术发展之一。从 2022 年 9 月到 2023 年 8 月,研究的工具总流量增长了 10.7 倍,从起始的 2.418 亿次访问增长到 28 亿次访问。其中,流量的飞跃从去年 11 月开始,ChatGPT 成为最快达到 100 万用户的平台。2023 年 5 月达到峰值约 41 亿,之后有所回落,但人们的兴趣仍巨大。 创新机会: 整合组件使 AI 系统全面理解物理世界环境,做出更智能决策和行动,对开发先进机器人和自动化系统有益。 算力成为核心竞争力关键指标,科技巨头投入巨资建设超大规模 GPU 集群。如 xAI 公司建成超级计算机,Meta 训练新一代模型。 行业竞争格局转向“建设为王”的新时代,数据中心扩展成为重点,建设效率可能决定在 AI 下一阶段的表现。 高质量数据稀缺。 行业动态:2024 年 11 月,AI 行业呈现快速发展态势,大厂纷纷推出新功能,加速产品进化,AI 技术开始渗透到多个领域。如 Claude 上线桌面端和语音输入、Blendbox 推出图层式 AI 生成工具、阿里发布 EcomlD 支持生成真实人像、Suno 上线 Personas 功能等。
2024-12-06
2024年11月,AI圈都发生了哪些大事
2024 年 11 月,AI 圈发生了以下大事: 11 月 1 日: 《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 11 月 7 日: 《》Marc Andreessen 强调,真正的变革性技术必须从产品设计之初就深度融入,而不是简单地在现有产品上添加 AI。他指出,AI 作为一种新型计算机,能够以概率方式输出结果,带来无限创造力。AI 将在多个行业引发重大变革,尤其是在生物科技和金融等领域,初创公司有机会重新定义产品类别,摆脱传统束缚。 《》前 OpenAI 研究员 Alexey Guzey 在 2017 至 2024 年间对人工智能(AI)发展的看法变化。他最初认为实现通用人工智能(AGI)需要数十年,但后来逐渐意识到大型语言模型(LLM)实际上并不具备真正的思考能力。阅读几年间他的心路历程,是非常好的求索经历。 《》在 10 月的总结中,Orange AI 反思了创业的艰辛,强调创业最难的是人和信任。创业者需找到优秀团队,并相信自己和他人。此外,利益分配在企业盈利后成为关键问题,需要坦诚沟通。10 月关注了 AI 搜索、音频、视频生成和编码等主题,并参与了多个活动,收获颇丰。 此外,还有关于 AI 在未来一年的 10 个预测: 一个主权国家向美国大型人工智能实验室投资 100 亿美元以上,需要国家安全审查。 没有任何编码能力的人独自创建的应用程序或网站将会迅速走红(例如 App Store Top100)。 案件开始审理后,前沿实验室对数据收集实践实施有意义的改变。 由于立法者担心权力过度,欧盟人工智能法案的早期实施最终比预期更为缓慢。 OpenAl o1 的开源替代品在一系列推理基准测试中超越了它。 挑战者未能对 NVIDIA 的市场地位造成任何重大打击。 由于公司难以实现产品与市场的契合,对人形机器人的投资水平将会下降。 苹果设备上研究的强劲成果加速了个人设备上 AI 的发展势头。 人工智能科学家撰写的研究论文被大型机器学习会议或研讨会接受。 一款以与 GenAI 元素交互为基础的视频游戏将取得突破性进展。
2024-11-16
2024年11月11日世界AI新闻有哪些
以下是 2024 年 11 月 1 日至 11 月 8 日的部分世界 AI 新闻: 11 月 1 日: 《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 11 月 8 日: 《》由上海外国语大学图书馆发布,探讨了 AI 素养在数智时代的重要性和演变。报告指出,AI 素养不仅涉及技术知识,还包括态度、价值观和应对复杂需求的能力。随着 AI 技术的广泛应用,社会对 AI 素养的需求日益增长。 其它一些报告发布在: AIGCxChina 研究院、无界 AI:《》 《》(英文) 《》 请注意,这只是部分新闻,可能还有其他未涵盖的内容。
2024-11-11
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
有没有RAG 基本架构的中文图示
以下是关于 RAG 基本架构的介绍: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。 4. LLM 从检索到的上下文中合成答复返回给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。
2024-10-17
最简单易懂的transformer图示
为了方便理解,我会尽量使用非技术术语进行解释,并配上一些图表。 Transformer 是 Google Research 于 2017 年提出的一种神经网络架构,它已经被证明了在自然语言处理 任务中的有效性,并被广泛应用于机器翻译、文本摘要、问答等领域。 Transformer 的基本原理是通过 注意力机制 来学习词与词之间的依赖关系,从而更好地理解句子的语义。 以下是一张简化的 Transformer 架构图: ! 图中主要包含以下几个部分: 编码器 : 编码器由多个相同的编码器层组成,每个编码器层又由两个子层组成: 自注意力层 : 自注意力层负责学习词与词之间的依赖关系。 前馈神经网络层 : 前馈神经网络层负责对每个词进行非线性变换。 解码器 : 解码器由多个相同的解码器层组成,每个解码器层又由三个子层组成: 自注意力层 : 解码器的自注意力层负责学习词与词之间的依赖关系,以及词与编码器输出之间的依赖关系。 编码器解码器注意力层 : 编码器解码器注意力层负责将编码器输出的信息传递给解码器。 前馈神经网络层 : 解码器的前馈神经网络层负责对每个词进行非线性变换。 位置编码 ,因此需要显式地将位置信息编码到输入序列中。 Transformer 的工作流程如下: 1. 将输入序列转换为词嵌入表示。 2. 编码器对输入序列进行编码,并输出编码器输出序列。 3. 解码器以自注意力机制为基础,根据编码器输出序列和之前生成的输出词,预测下一个词。 4. 重复步骤 3,直到生成完整的输出序列。 Transformer 的注意力机制是其核心思想,它使 Transformer 能够捕获长距离依赖关系,从而更好地理解句子的语义。 以下是一张简化的注意力机制示意图: ! 图中主要包含以下几个部分: 查询 : 查询代表要计算注意力的词。 键 : 键代表所有候选词。 值 : 值代表所有候选词的语义信息。 注意力分数 : 注意力分数代表查询词与每个候选词之间的相关程度。 加权值 : 加权值代表每个候选词对查询词的贡献程度。 注意力机制的计算过程如下: 1. 对查询、键和值进行缩放变换。 2. 计算查询与每个键的点积。 3. 对点积进行 softmax 运算,得到注意力分数。 4. 将注意力分数与值相乘,得到加权值。 5. 将所有加权值求和,得到最终的输出。 Transformer 模型的出现是 NLP 领域的一个重大突破,它使 NLP 任务的性能得到了大幅提升。Transformer 模型及其衍生模型已经被广泛应用于各种 NLP 任务,并取得了 stateoftheart 的结果。 希望以上解释能够帮助您理解 Transformer 的基本原理。
2024-04-29