直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI是什么,怎么形成的?

回答

AI 即人工智能,它的形成主要基于以下方式:

  1. 大模型的形成:大模型是凭借海量的数据,在向量空间中学习知识的关联性从而形成的,其运作逻辑难以观测,脱离了 if-else 的层面。而此前的语音技能 NLU 是通过一系列规则、分词策略等训练而成,运作逻辑规律可观测,具有 if-else 式的逻辑性。
  2. 生成式 AI 的形成:生成式 AI 由监督学习技术搭建。在 2010 - 2020 年大规模监督学习的基础上发展,生成文本时会使用到大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而不断生成新的文本内容。这需要千亿甚至万亿级别的单词数据库。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

在深入了解了AI的运作原理,并盘了众多当前市面上AI的落地产品之后,我们不妨重新回到最开始的问题。此次AI大模型究竟引发了怎样的变革?在思考这个问题之前,我想先分享下去年刚接触大模型时,困扰我的一个问题。即大模型与当下的智能语音技能的NLU存在什么差异?此前,我也曾涉足过一些语音产品的设计逻辑,知道语音技能链路其实就是把声音转为ASR,再对文本进行NLU理解,然后映射到对应的语音技能表中,最后让程序依据相应的语音技能指令完成逻辑。乍看起来,大模型能实现的,通过语音技能似乎也能达成,那我们引入大模型的意义在哪里呢?抱着这样的疑问,我尝试去理解了大模型的原理。当我在初步理解大模型的原理之后,我发现二者还是存在本质性的差别的。差别在于,后者的语音技能NLU仅是通过一系列规则、分词策略等训练而成的产物。而且NLU的运作逻辑规律都是可观测的,具有if-else式的逻辑性。而大模型,则是凭借海量的数据,在向量空间中学习知识的关联性从而形成的,其运作逻辑难以观测,已然脱离了if-else的层面。

学习笔记:Generative AI for Everyone吴恩达

在整体的人工智能领域中,监督学习用于标记事物,一直占据很大比例。现在生成式AI在近期快速崛起,但强化学习与无监督学习也是AI领域重要的一种工具。生成式AI由监督学习技术搭建。2010-2020年是大规模监督学习的十年,这为现代人工智能奠定了基础。生成文本会使用到大语言模型,生成的过程是,大语言模式使用监督学习不断预测下一个词语,比如,i like,它会不断预测like后的词语是什么,经过大量的数据,它可能后面带的是,beaty,或者,eating,而eating后又大概率预测会有food。这样不断地生成新的文本内容。(这需要千亿,甚至万亿级别的单词数据库)

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

其他人在问
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
形成指令让AI根据我的论文框架写论文
以下是为您提供的让 AI 根据论文框架写论文的相关指导: 1. 提供详细的背景信息:如您的个人经历、研究主题等,类似于“我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年……”这样具体且全面的描述。 2. 结构化组织内容:使用编号、子标题和列表来使论文条理清晰,例如规定概述内容解读结语的结构,或者分标题阐述不同部分。 3. 明确文章结构:包括开门见山且能引起目标群体悬念的标题,说清楚要解决的问题及背景、可能导致的损失的第一部分,以案例引入的第二部分,对案例进一步分析的第三部分,以及给出具体操作建议的第四部分。 4. 丰富细化内容:先让 AI 写故事概要和角色背景介绍并做修改,然后一段一段进行细节描写,可采用让 AI 以表格形式输出细节描述的技巧,确保内容具体且前后一致。 5. 注意语言风格:可以自己定义,也可以根据文章生成对应语言风格关键词让 AI 遵循。 6. 遵循相关要求:比如某些比赛对作品的字数、修改限制等。 需要注意的是,虽然可以利用 AI 辅助写作,但并非提倡这是道德的使用方式。同时,如果是接收方,最好为组织准备好迎接各种 AI 生成的内容。
2025-03-30
飞书多维表格如何关联AI形成工作流
要将飞书多维表格关联 AI 形成工作流,可以参考以下步骤: 前期准备: 1. 设计 AI 稍后读助手的方案思路,包括简化“收集”、自动化“整理入库”和智能“选择”推荐等方面。 简化“收集”:实现跨平台收集功能,支持多端操作,理想方式是输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入。 自动化“整理入库”:入库时自动整理关键信息,支持跨平台查看。 智能“选择”推荐:根据收藏记录和阅读兴趣生成阅读计划。 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”。 4. 把配置好的工作流添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据。 此外,还有一些关于工作流的分享心得,如起床让 AI 排 TODO 优先级、工作中有傲娇 AI 小助理加油、重点事项拆成 bot 团队组、优化 bot 包括内容选题、短视频脚本、数据分析等,并将相关资产放入飞书的知识库和多维表单中维护,未来还可能将整个公司业务搬入飞书等。
2025-03-13
可以通过图片形成视频吗
可以通过图片形成视频,以下是几种常见的方法: 1. 使用 Camera Motion: 点击“AddImage”上传图片。 在“Prompt”中输入提示词。 选择想要的运镜方向,输入运镜值(https://waytoagi.feishu.cn/docx/Ci9yd5xu2o46rXxNofdcnqH9nXbdoxcniTMBNtWHj6MSpXvB2DTyUh)。 设置运动幅度,运动幅度和画面主体运动幅度有关,与运镜大小无关,可以设置成想要的任意值。 选择好种子(seed)、是否高清(HD Quality)、是否去除水印(Remove Watermark)。 点击“create”,生成视频。 2. 使用 Runway: 图片搞定之后,拖到 Runway 里面去图生 4s 视频。(Runway 是收费的,也可以找免费的,或在闲鱼、淘宝买号) 进入 Runway 官网首页,点击 start with image,然后直接将图片拖进来。 动画幅度尽量用 3,5 有时候会乱跑。 啥都不用改,直接点击生成即可。 注意:不需要等进度条转完,可以直接继续往里放图片,可以同步执行。 直接点删除,然后重新上传下面的图即可(最多可以放几个可自行测试)。 重复步骤即可生成所有视频。 3. 使用 MorphStudio(网页 UI 版本): 在“Shot”卡中,输入提示并点击蓝色星号图标生成视频,也可以上传图片或视频,并以其他方式生成视频。 根据提示以及视频长度和分辨率等因素,各代的等待时间可能从 20 30 秒到几分钟不等。随时生成更多的视频,因为你等待现有的完成。 生成完成后,点击卡片右下角的展开图标来查看生成的照片的信息,包括提示、模型和用于该照片的参数。 对于生成的视频,可以以各种方式重新生成视频。点击生成的视频,会弹出三个图标:重新提示、重新生成和样式转换。 重新提示:可以编辑本视频输入的提示,同时保持使用的所有模型和参数相同。 重试:保留原有的提示和设置,重新生成视频。 风格转换:保留原始视频的构图和动画,同时使用预设来更改视频的风格。目前有现实、动画 2D、动画 3D、幻想、像素风格可用,将很快增加更多预设。 添加/编辑镜头: 添加一个新镜头:当需要添加更多的镜头时,可以点击屏幕左上角的按钮,在时间轴上添加一个镜头。新生成的抽牌将作为导出抽牌前的最后一张抽牌,您可以随意与其他抽牌切换抽牌的位置。 编辑快照:当单击快照卡右上角的“…”图标时,可以编辑卡的名称、添加说明,或者保存和删除快照。
2025-03-05
如何将大量记录的文本内容输入知识库,并且形成有效问答问答
要将大量记录的文本内容输入知识库并形成有效问答,可参考以下方法: 1. 使用 embeddings 技术: 将文本转换成向量(一串数字),可理解为索引。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关。 在向量储存库中保存 embeddings 向量和文本块。 当用户提出问题时,将问题转换成向量,与向量储存库的向量比对,查找距离最小的几个向量,提取对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 2. 创建知识库并上传文本内容: 在线数据: 自动采集:适用于内容量大、需批量快速导入的场景。 在文本格式页签选择在线数据,单击下一步。 单击自动采集。 单击新增 URL,输入网站地址,选择是否定期同步及周期,单击确认。 上传完成后单击下一步,系统自动分片。 手动采集:适用于精准采集网页指定内容的场景。 安装扩展程序,参考。 在文本格式页签选择在线数据,单击下一步。 点击手动采集,完成授权。 输入采集内容网址,标注提取内容,查看数据确认后完成采集。 本地文档: 在文本格式页签选择本地文档,单击下一步。 拖拽或选择要上传的文档,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后单击下一步,选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。
2025-02-28
什么AI可以帮我将知识点形成思维导图
以下是一些可以帮助您将知识点形成思维导图的 AI 工具和方法: 1. 6 月 11 日 AI 秒学团队的方法: 思维导图模块的应用缘由:从新闻到旧闻,拒绝缪闻,追本溯源;由点及面,广度与深度兼顾,培养小朋友的探究意识与能力;凝练提升,形成强大的知识网络,助力小朋友研究性思维、统合型能力的培养。 具体操作:通过新闻涉及的主题词/关键词,或是小朋友对新闻中的感兴趣点,提取背后的知识点;调用“generateTreeMind”插件,创建一个思维导图,清晰展示知识点的起源、发展和相互关系,凝练知识网络;通过“快捷指令”提醒小朋友,可以使用此功能。 初步尝试放在聊天机器人的工作流里,存在调用比较慢且不能顾到全局的问题。后期调整为直接调用插件+提示词直接 cue 到,Precess on 与树状图相比,后者可以直接出图,点击后可以直达网站,进行二次修改。 实操展示包括新闻激发、提炼关键词/主题词/兴趣点,并发出指令“思维导图”。 2. kimi: kimi 是月之暗面公司推出的类似 ChatGPT 的大模型聊天机器人,支持超长的上下文,能输入长达 20 万字。 可以让 kimi 梳理全书,但目前 kimi 还不能直接生成思维导图,需要借助 MarkMap 来得到这本书内容的思维导图。 对于具体的章节或者知识点,可以让 kimi 展开讲解。 3. 危柯宇的方法: 日常活动文案输出(读书社活动,AI 复核型玩法“高阶”,依托传音智库+飞书妙记+在线思维导图 Markmap)。 方法一:一键知识图谱。用 kimi chat 让 AI 拆解这本书的三级章节并按照 markdown 产出内容,然后复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片。 方法二:推导知识图谱(可以参考下面 prompt 自己构建)。
2025-02-26
deepseep怎么结合其他ai软件形成工作流
以下是 Deepseek 结合其他 AI 软件形成工作流的相关内容: 工作流程详解: 1. 内容获取: 输入新闻链接,系统自动提取核心内容。 开始节点,入参包括新闻链接和视频合成插件 api_key 。 添加网页图片链接提取插件,承接新闻链接。 获取网页里的图片,以 1ai.net 的资讯为例。 利用大模型节点提取图片链接,只拿提取的链接集合的第一条,搞定新闻主要图片。 调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。 使用链接读取节点,提取文字内容。 在提取链接后面接上大模型节点,用 DeepseekR1 模型重写新闻成为口播稿子。 可在提示词里添加个性化台词防伪。 手动接入推理模型,DeepseekR1 基础版本限额使用。 效果展示: 提供了相关视频示例。 灵感来源: 观察到 Coze 平台上多种视频自动化玩法,介绍如何通过 DeepSeek+Coze 实现新闻播报的自动化生成工作流。 核心功能: 一键提取新闻内容。 智能生成播报文案。 AI 语音合成播报。 自动化视频制作。 全流程无人工干预。 韦恩的相关工作流: 创建名为 r1_with_net 的对话流。 开始节点直接使用默认的。 大模型分析关键词设置:模型为豆包通用模型lite,输入为开始节点的 USER_INPUT,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件为 BingWebSearch,参数为上一个节点大模型分析输出的关键词,结果为 data 下的 webPages。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型为韦恩 AI 专用 DeepSeek,输入包括搜索结果和开始节点的 USER_INPUT,开启 10 轮对话历史。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}} 。 测试并发布工作流:输入测试问题,测试完成后直接发布工作流。
2025-02-23