直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

做一个AI和就业结合的知识博主,主要分享哪些内容呢

回答

作为一个 AI 和就业结合的知识博主,可以主要分享以下内容:

  1. 宏观层面:如创新趋势以及这些创新带来的启发,以大框架的形式讲解《预见 AGI》等主题。
  2. 微观层面:包括基本产品的使用方法等。
  3. 邀请行业专家授课:借助自身资源邀请专家分享见解。
  4. 提示词相关:掌握提示词中的核心关键词的方法,理解并创新创作过程。
  5. 案例分享:如“AI+工作场景”中的七大行业的商业化应用案例,包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等行业中 AI 的具体应用,如日常办公文档处理、学生学习评估、游戏定制化、舆情监测、金融理财顾问等。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

周鸿祎免费课AI系列第一讲

所以我的课程会先从宏观开始,比如今天我们演讲的主题《预见AGI》,我从大框架上跟大家讲讲创新趋势,这些创新带给我们的启发,后面我会宏观、微观结合,系统性的就几个主题展开系列免费课。我们安排人工智能研究院的产品经理、技术专家会跟我配合,会讲一些基本产品的一些使用方法这些微观层面的内容。当然,我一个人的力量也是不够的,我对人工智能的理解一定是比较片面的,大家都知道盲人摸象的故事,AI走到最前面,实际上大家都在摸着石头过河,科技的发展本来也是这样。但是,我跟一个普通做知识博主的人相比,还是有点资源,行业里我还是认识很多行业的专家。所以我会邀请一些这样的专家给大家讲讲课。那么大家为什么要来听我的课,我的观点是,在人工智能的技能和知识面前人人平等,这是一种专业技能,就像学会开车一样。所以,我认为学会人工智能是每个人在未来自己职业发展生涯里一个必备的基本能力。当大家都掌握工具之后,工具都先进了,谁进步谁退步其实和工具没有关系。但如果你不懂人工智能,不会用人工智能工具,那可能就会被淘汰。

学社说明

在各大社交平台上,我们能欣赏到众多以AI技术创作的精美画作。博主们通常会分享一组英文提示词,让你能够依此复现这些作品。然而,随着时间推移,你可能会发现自己陷入了仅仅复制与粘贴的循环中,似乎并未从中学到任何实质性的技能。你也尝试理解那些复杂的提示词时,密集的英文表述和不准确的翻译常常令人望而却步。但实际上,掌握并理解一些提示词中的核心关键词并不像想象中那么困难,只要掌握了正确的方法,你完全有能力独立还原并创新创作过程。参考

AI 产品案例严选

|标题|简介|作者|分类|前往查看?|封面|入库时间|<br>|-|-|-|-|-|-|-|<br>|七大行业的商业化应用|企业运营:日常办公文档材料撰写整理;营销对话机器人,市场分析,销售策略咨询;法律文书起草、案例分析、法律条文梳理;人力资源简历筛选,预招聘,员工培训。教育:协助评估学生学习情况,为职业规划提供建议;针对学生情况以及兴趣定制化学习内容;论文初稿搭建及论文审核;帮助低收入国家/家庭通过GPT获得平等的教育资源。游戏/媒体:定制化游戏,动态生成NPC互动,自定义剧情,开放式结局;出海文案内容生成,语言翻译及辅助广告投放和运营;数字虚拟人直播;游戏平台代码重构;AI自动生成副本。零售/电商:舆情、投诉、突发事件监测及分析;品牌营销内容撰写及投放;自动化库存管理;自动生成或完成SKU类别选择、数量和价格分配;客户购物趋势分析及洞察。金融/保险:个人金融理财顾问;贷款信息摘要及初始批复;识别并检测欺诈活动风险;客服中心分析及内容洞察;保险理赔处理及分析;投资者报|钛媒体深度|工作|[七大行业的商业化应用](https://waytoagi.feishu.cn/wiki/I9L3wS10kie2KFki0XDcaJdqnfb?table=tblwdvsWICkId67f&view=vewm6DMY99)||2023/10/30|

其他人在问
有没有那种可以模仿抖音百万博主爆款文案的写作风格以及写作模板的AI
以下是一些关于模仿抖音百万博主爆款文案写作风格和模板的 AI 相关内容: 1. 画小二:Coze 工作流提供了一系列针对抖音热门视频转小红书图文的配置,包括整体结构图、各模块参数配置(如开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块等)的详细说明。同时,在小红书标题和正文写作方面,具备多种技能,如采用二极管标题法创作吸引人的标题,产出口语化、简短且含适当 emoji 表情和 tag 标签的 200 字左右正文。 2. 夙愿:介绍了使用 GPT 模仿创作内容的万能思路,特别是在 Prompt 编写中的数据清洗部分。指出对标博主的文案模板化,数据清洗有人工和自动两种方法,推荐使用 GPT4 的数据分析器进行自动清洗。 3. AIIP 共学模版自媒体全域运营:包含对标笔记的详细信息,如标题、作者、详情、账号、主页、封面、视频、文案等。以“Deepseek+即梦,包装设计步骤来啦”为例,介绍了利用 Deepseek 和即梦进行设计的步骤,并表示希望对用户有帮助。
2025-04-11
推荐海外AI博主
以下是为您推荐的一些海外 AI 博主: :AI 艺术家 :AI 艺术家 :AI 新闻布道者(日本) :创始人 :(AI 工具) :FutureTools.io 创始人 :Lore.com 创始人(AI 艺术中介) :AI 布道者,知名画图 GPTs 创始人 :AI 艺术家 :a16z 合伙人 @Riabovitchev:电影概念艺术家 :AI 新闻布道者视频博主 :日本艺术家,最近在玩 suno :论文布道者 :AI 新闻布道者 :音乐创作者 :开发商+艺术爱好者 :沃顿教授 :AI 新闻布道者 :runway 官号 :英伟达机器学习工程师 :AI 新闻布道者 :创意总监和非官方 MJ 托儿 :AI 教育布道者 :Pika 官号 :AI 新闻布道者 :Adobe 社区布道者 Maps&AR/VR :日本艺术家千与千寻作者 :AI 艺术家 :AI 布道者归藏 :AI 布道者 :动画工作室/VFX :Stability AI 日本号 :人工智能与半导体研究与咨询 :AI 艺术家创世纪作者 :人工智能教育家和顾问
2025-03-16
我是一名视频博主,我想知道我的视频如何测试它的流量是否会好,以及ai怎么能够辅助我完成高质量的视频脚本
以下是关于您作为视频博主测试视频流量以及利用 AI 辅助完成高质量视频脚本的相关内容: 测试视频流量: 目前没有直接针对测试视频流量是否会好的特定方法,但您可以通过以下方式进行预估和分析: 1. 参考同类热门视频的数据和特点,了解大致的流量表现范围。 2. 观察视频发布初期的点击量、播放时长、点赞、评论、分享等数据的增长趋势。 利用 AI 辅助完成高质量视频脚本: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。您可以把想写的选题告诉 ChatGPT,数十秒时间它就能生成一条完整的视频脚本,包括具体场景和转场画面。虽然在创意上可能不够出色,但对于非专业人士入手视频创作有一定帮助。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。您还可以让 ChatGPT 为您在海量背景音乐中筛选适合视频情绪的 BGM。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-04
请向中老年人自媒体博主推荐常用有效、简单便捷的几个AI工具
以下是为中老年人自媒体博主推荐的常用有效、简单便捷的 AI 工具: 1. 创作方面: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity。 图片处理:DallE、Leonardo、BlueWillow、Midjourney。 版权写作:Rytr、Copy AI、Wordtune、Writesonic。 设计:Canva、Clipdrop、Designify、Microsoft Designer。 网站搭建:10Web、Framer、Hostinger、Landingsite。 视频处理:Klap、Opus、Invideo、Heygen。 音频处理:Murf、LovoAI、Resemble、Eleven Labs。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple。 自动化工具:Make、Zapier、Bardeen、Postman。 市场营销:相关工具未明确提及。 2. 数字人工具: 开源且适合小白用户,特点是一键安装包,无需配置环境,简单易用。功能包括生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。系统兼容 Windows、Linux、macOS,模型支持 MuseTalk(文本到语音)、CosyVoice(语音克隆)。使用步骤为下载 8G+3G 语音模型包,启动模型即可。GitHub 链接: 。 3. 视频生成工具: Google Veo 2,生成的视频接近真实,几乎难以分辨,适合创作和内容制作。相关链接:
2025-02-25
我是一位短视频AI博主,您能够为我提供哪些帮助呢?
以下是我能为您这位短视频 AI 博主提供的帮助: 1. 为您介绍根据视频脚本生成短视频的工具,例如: ChatGPT 结合剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 Pictory:允许用户通过提供文本描述轻松创建和编辑高质量视频。 VEED.IO:提供 AI 图像和脚本生成器,帮助规划视频内容。 Runway:能将文本转化为风格化视频内容。 艺映 AI:提供文生视频、图生视频、视频转漫等服务。 2. 为您介绍北京分队中与短视频 AI 相关的人员信息,他们在不同领域具有丰富的经验和技能,可能为您的创作提供灵感或合作机会。例如: wb:对 AI 视频感兴趣,运营私域资源讨论群,关注 AI 前沿动态。 祖海:拥有编导和操盘手资源,从事个人 IP 咨询和陪跑以及 Ai 数字人获客。 宇竹:在多个领域有成功的 IP 操盘经验。 U:业余配音演员和歌手,擅长音频和简单视频剪辑。 萝卜:具备生图和生视频剪辑经验。 李先森:星动 AI 联合创始人,致力于 AI 教育培训和商业应用。 Lucky:在信息技术领域有丰富经验,能提供多种 AI 相关项目服务。 粉仔:抖音上的 AIGC 博主,熟悉主流 AIGC 工具。 sam:热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。 张帆:产品经理,正在学习 AI,尝试做知识分享。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-24
有没有推荐的关于AI话题的外网博主推荐
以下是为您推荐的一些关于 AI 话题的外网博主: :日本艺术家,最近在玩 suno :论文布道者 :AI 新闻布道者 :音乐创作者 :开发商+艺术爱好者 :沃顿教授 :AI 新闻布道者 :runway 官号 :英伟达机器学习工程师 :AI 新闻布道者 :创意总监和非官方 MJ 托儿 :AI 教育布道者 :Pika 官号 :AI 新闻布道者 :AI 艺术家 :AI 艺术家 :AI 新闻布道者日本 :创始人 :(AI 工具) :FutureTools.io 创始人 :Lore.com 创始人(AI 艺术中介) :AI 布道者,知名画图 GPTs 创始人 :AI 艺术家 :a16z 合伙人 @Riabovitchev:电影概念艺术家 :AI 新闻布道者视频博主
2025-02-20
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
智能体分享
以下为为您分享的两个智能体相关内容: 旅行青蛙智能体 智能体设计思路: 创意来源于多年前的火爆 APP——旅行青蛙,采用旅行明信片的方式与用户互动,激发用户旅游念头,通过大模型进行诗歌和文案创作,可作自媒体素材。 编排方式:采用单 Agent 的多分支模式,通过意图识别确定用户旅行意图,运行流畅稳定,趣味性高,效果惊艳。 功能结构:基础功能包括时间季节提取、目的地景点提取、旅行日记文案、景点诗句、文生图提示词编写、风格固定、自定义 FLUX 插件,相互关联构成完整旅行体验。 智能体功能实现: 随机目的地的旅行模块:青蛙自主选择目的地旅行,发回明信片。 指定季节和目的地的旅行模块:青蛙根据对应时间和指定地点,发回未来旅行邮件。 互动模块:用户可投喂食物,与青蛙亲密互动。 历史上的今天:用户选择宅家时,青蛙返回历史新闻并绘制相关图片。 小细节:使用获取用户 ID、坐标,避免推荐与用户同一地区景点。 作者:二师兄 体验链接:https://tbox.alipay.com/pro/share/202501APoXpG00196792?platform=WebService 智能体简介:我是您的专属旅行青蛙,热爱探险和发现新事物,等着带您踏上奇妙旅程! 应用场景:目标人群为任何人,解决借用曾经风靡卡通角色制作旅游景点盲盒、绘制打卡照片、提供文案和五言绝句的问题,给人身临其境之感,让人对未去过景点充满期待。 主要功能: 玩法一:对它说“世界很美好,请出去走走”,它就会出发探索并寄回明信片。 玩法二:告诉它未来旅行计划,如“去马尔代夫,我想看大海”,它会提前发来 Email 包含旅行小贴士和期待风景。 玩法三:它旅行时担心它饿肚子说“给它吃汉堡”,它会发来微信照片展示享受美食。 玩法四:今天累了在家休息,它会为您找到历史上今天发生的趣事。 汽车栏目主持人(零壹老师)智能体 创作思路: 前期工作:进行行业资料收集,官方提供资料在智能座舱赛道、营销赛道、售后赛道的丰富程度不同,COZE 的插件生态更有利于座舱和营销赛道,售后资料几乎为零。 赛道研判:竞争强度为营销赛道>智能座舱赛道>售后赛道,考虑插件生态支持、官方资料支撑和行业专业性限制。 市场调研:包括线下领克 4S 门店销售资料索取、懂车帝等网络渠道关键词热搜、车主交流购车养车用车经验。 专家调研:队长罗文人脉资源分享,引荐行业专家。 结论:售后智能体搭建需大量数据支撑,当前售后门店有成熟 SaaS 系统,非行业人士在售后方面智能体很难找到突破口。
2025-03-31
我想找你之前分享过的文档,有关提示词批量处理的
以下是为您整理的有关提示词批量处理的相关内容: 在 Coze 上创建工作流、Bot 中,大模型组件的系统级提示词用于定义模型的角色和任务,与外层用户直接交互的提示词不同。系统级提示词侧重于模型的内部工作机制,外层提示词则更多关注根据用户指令进行编排和响应。通过精心设计这两种提示词,可增强模型对用户指令的处理能力,确保工作流顺畅高效。 在大模型组件中,批处理即迭代处理,可对集合或数组中的每个元素进行批量处理。通过依次遍历集合或数组,每个元素都能经过相同处理流程,关键在于通过有限循环实现高效数据处理。批处理中可设置循环次数和并发量,例如 Coze 的大模型组件最多支持 200 次循环,可通过调整并发量在一次循环中同时处理多个元素以提高处理效率。 在 AI 应用到工作场景中制作单词卡片时,提示词编写包括生成符合要求的单词卡内容并填入 Excel 文件中。通过给出基本示例和附加规则限制,输入多个单词可实现同时解析,虽效果可能因方法论不足而有差异,但大体格式符合要求。批量产出时需上传压缩文件并完成套版,即可获得符合要求的卡片。
2025-03-24
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24
昨天有什么Ai分享活动
昨天的 AI 分享活动有: 1. AI bot 拟人化大赛的最后一天分享日,五个团队带来精彩分享。冠军团队《》无私分享建构 AI bot 的思路和提示词。相关视频回放: 五个团队的嘉宾分享视频回放:https://www.bilibili.com/video/BV1Kr421M7Cb/ 第一名团队分享的视频回放:https://www.bilibili.com/video/BV1ji421a7zJ/ 投稿作品 2. AI 版权分享课,麦橘教大家用 AI 做小游戏编程的跨界活动,包括: 用 AI 做小游戏编程的活动策划和心得。 使用 Poe 制作小游戏的经验分享。 麦橘谈增量游戏、肉鸽游戏及其制作与 AI 交互。 3. 03 0 基础建站相关分享,包括: 银海老师讲解模型基础、AJ 带大家浏览知识库,大宇老师的建站教程。 未来的课程安排,如明天接触编程,后天 Garmon 老师用 AI 手搓机器人。 AIPO 活动 11 天共学内容,含生图、生视频、模型训练,还有应用搭建课及具身智能机器人课。 线下活动规则,包括组队、物料、角色、资本和奖品等。 以 config UI 为主题的活动,有赞助、线下活动、课程及相关交流等内容。
2025-03-17
我是一个普通本科的大二学生,学的是软件工程专业,但是我本身编程能力不是很好,我对ai拥有浓厚的兴趣,喜欢去学习并运用ai,我想未来all in ai并成为一个产品经理,我想给你分享一下我的计划,我想今年下半年考过英语四级,并且参加苹果26年的swift 学生挑战赛,我是零基础但是我愿意学习,希望你帮我制定一个包含实施策略、里程碑和最佳实践的详细框架,以帮助我有效地实现这些目标!
以下是为您制定的包含实施策略、里程碑和最佳实践的详细框架,以帮助您有效地实现目标: 一、英语四级考试 实施策略: 1. 制定学习计划,每天安排一定时间学习英语,包括词汇、语法、听力、阅读和写作。 2. 多做历年真题,熟悉考试题型和难度。 3. 参加英语学习社群或找学习伙伴,互相监督和鼓励。 里程碑: 1. 每月进行一次模拟考试,评估学习进度。 2. 两个月内完成词汇和语法的系统学习。 最佳实践: 1. 利用碎片时间背单词,如在公交车上、课间等。 2. 听力练习时,反复听同一篇材料,直到完全听懂。 3. 写作练习后请老师或同学帮忙批改,总结错误和不足。 二、参加苹果 26 年的 Swift 学生挑战赛 实施策略: 1. 从零基础开始学习 Swift 编程语言,通过在线课程、书籍等资源进行系统学习。 2. 参与相关的编程实践项目,提升实际操作能力。 3. 关注苹果官方网站和社区,了解挑战赛的最新动态和要求。 里程碑: 1. 三个月内掌握 Swift 编程语言的基础知识。 2. 半年内完成一个小型的 Swift 项目开发。 最佳实践: 1. 遇到问题及时在技术论坛或社区寻求帮助。 2. 定期回顾和总结所学知识,加深理解和记忆。 3. 参考优秀的 Swift 项目案例,学习他人的编程思路和技巧。 三、成为 AI 产品经理 实施策略: 1. 学习 AI 相关的基础知识,包括机器学习、深度学习等。 2. 了解产品经理的职责和工作流程,通过实践项目积累经验。 3. 关注行业动态,参加相关的研讨会和培训课程。 里程碑: 1. 一年内掌握 AI 基础知识和产品经理的基本技能。 2. 参与实际的 AI 项目开发,担任产品经理助理角色。 最佳实践: 1. 多与行业内的专业人士交流,获取经验和建议。 2. 不断提升自己的沟通和协调能力,以更好地推动项目进展。 3. 学会从用户需求出发,设计具有创新性和实用性的 AI 产品。 希望以上框架对您有所帮助,祝您顺利实现目标!
2025-03-01
我有什么方法,能够让ai帮我分析我有几篇飞书文档的内容,然后行程一个分享的提纲
目前让 AI 直接分析您的多篇飞书文档内容并形成分享提纲可能具有一定的挑战。但您可以尝试以下方法: 1. 首先,将飞书文档中的关键内容提取出来,整理成较为清晰的文本格式。 2. 然后,使用具有文本分析能力的 AI 工具,如某些自然语言处理模型,输入整理后的文本,让其帮助您总结主要观点和关键信息。 3. 您还可以向 AI 提供一些关于分享提纲的格式和重点要求的提示,以便它能生成更符合您需求的提纲。 需要注意的是,AI 的分析结果可能需要您进一步的审查和调整,以确保准确性和完整性。
2025-02-24
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14