直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何在fastgpt里做企业微信搭建

回答

在 FastGPT 里搭建企业微信可以按照以下步骤进行:

  1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型。
  2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建到这里就可以,它也有问答界面。
  3. 搭建 chatgpt-on-wechat 接入微信:
    • 克隆项目代码,如遇网络问题,可把链接替换为国内镜像。
    • 安装 Python 3 和 pip。
    • 安装核心依赖(必选)和拓展依赖(可选,建议安装)。
    • 复制一份 config 文件,方便后续配置。
    • 用公网 ip:3000 打开 FastGpt,在应用中获取对外的 API 接口(操作:应用>发布应用>Api 访问),点击“新建”API 秘钥,复制 API KEY 和新建按钮旁边的 API 根地址 2 个内容,用于配置接入微信。
    • 回到宝塔,在【文件】菜单中找到 root 下的 chatgpt-on-wechat 文件夹中的 config.json 文件,双击文件,复制下方的配置全部替换掉并保存文件。
    • 点击文件夹上方功能栏中的【终端】,运行程序,返回扫描执行命令后的“终端”内的二维码,完成登录。
  4. 搭建完后想拓展功能,可参考 Yaki.eth 同学的教程Yaki:GPT/MJ 接入微信,里面的 cow 插件能进行文件总结、MJ 绘画的能力。

此外,还有以下补充内容: 第四天教程:FastGPT 教学中的部署项目:

  1. 使用特定版本的微信,点击下载WeChatSetup-3.9.2.23.exe进行替换安装。若下载不了,可去 https://f.ws59.cn/f/egjbgm2p565 复制链接到浏览器打开。若过期,去公众号回复:Hook,自动获取下载地址。
  2. 下载 NGCbot 机器人项目,解压缩。
  3. 解压后,在空白处 shift+鼠标右键,点击“在此处打开 Powershell 窗口”,打开 shell 窗口后粘贴代码并回车。
  4. 在当前的 NGCbot 文件夹下,找到 Config 文件中的 config.yaml,右键选择用记事本方式打开。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

1.搭建[OneAPI](https://github.com/songquanpeng/one-api),这东西是为了汇聚整合多种大模型接口,方便你后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。2.搭建[FastGpt](https://fastgpt.in/),这东西就是个知识库问答系统,你把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答你问题,这么个系统。如果你不想接到微信去,自己用用,其实到这里搭建完就OK了,他也有问答界面。3.搭建[chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat),接入微信,配置FastGpt把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT/MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。完成上面3步就算OK了,那我们正式开始。

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

1.克隆项目代码:注:如遇到网络问题,可把链接替换为国内镜像[https://gitee.com/zhayujie/chatgpt-on-wechat](https://gitee.com/zhayujie/chatgpt-on-wechat)1.安装Python 3和pip:2.安装核心依赖(必选):能够使用itchat创建机器人,并具有文字交流功能所需的最小依赖集合。1.拓展依赖(可选,建议安装):如果某项依赖安装失败,可重新执行再继续1.复制一份config文件,方便后续配置。2.然后用公网ip:3000打开FastGpt,应用中,获取个对外的API接口(操作:应用>发布应用>Api访问)。点击“新建”API秘钥,复制API KEY和新建按钮旁边的API根地址2个内容。用于配置接入微信。3.回到宝塔,找【文件】菜单,找到root,找到chatgpt-on-wechat文件夹,找到config.json文件。双击文件,复制下方的配置全部替换掉。保存文件4.点击文件夹上方功能栏中的【终端】,运行程序(注意,不是左侧一级菜单里的终端)返回扫描执行命令后,“终端”内的二维码,就完成登录成功了。1.最后,我们来看下微信对话效果,是根据我们在fastgpt录入的文档内容来回答的哦。群里要记得@人才能得到回复,如图。1.搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT/MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。

【共学最全版本】微信机器人共学教程

6、接下来,我们需要使用一个特定版本的微信。给你准备好了,点击下载,下载后直接替换安装。[WeChatSetup-3.9.2.23.exe](https://bytedance.feishu.cn/space/api/box/stream/download/all/TmT6bf3g9o7NzPxlc4Ic60j0njF?allow_redirect=1)(安装后,有可能你在的群却显示退出,其实没事,发个消息就好了,并不是真的退出)下载不了来这里下载:https://f.ws59.cn/f/egjbgm2p565复制链接到浏览器打开。如果过去过期了,去公众号回复:Hook,自动获取下载地址。7、下载NGCbot机器人项目,也给你准备好了,直接下载,然后解压缩。(以后版本有更新,可以自己去下载新版本:https://github.com/ngc660sec/NGCBot.git)[NGCBot-master.zip](https://bytedance.feishu.cn/space/api/box/stream/download/all/MJ3DbCvE1olfc8xm4lYc3P5bnIb?allow_redirect=1)8、解压后,打开NGCbot文件夹,9、在空白处,shift+鼠标右键,点击“在此处打开Powershell窗口”10、打开shell窗口后。粘贴进入以下代码,并点击回车:11、粘贴进入以下代码,并点击回车:等待安装,安装完成后,关闭窗口即可。12、然后在当前的NGCbot文件夹下,找到Config文件,找到config.yaml,右键选择打开方式,选择用记事本方式打开。

其他人在问
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
微信智能客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例中通过创建 Bot 创建。侧边导航栏一直有创建 Bot 的方式,仅主页有 Coze Assistant。两者区别在于: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮您教她技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,发布流程较复杂,下面是重新注册和解绑后重新配置的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-15
coze的智能体如何接入微信?
要将 Coze 智能体接入微信,可按以下步骤操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可以看到运行的是两个服务。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏 bot/之后的数据就是该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 绑定微信:准备一个闲置的微信,点击容器,点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新界面,点击“刷新日志”,若看到 WeChat login success,即表示微信登录成功。为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,若显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试:把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。
2025-04-11
怎么搭建微信机器人?
以下是搭建微信机器人的步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 如果想为这个 AI 赋予提示词,可以返回相应步骤进行更改。例如在“目录 4 里的第 17 步”或“第三章,第 7 步”,其中双引号内的 value 部分,便是设置 AI 提示词的地方。 3. 此后,进行任何更改,都需要重新打印登陆二维码。并且一个月内,不要上来就加好友、最好不要私聊聊天。 4. 报错"wxsid"是因为微信未实名,实名即可解决。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 重新在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录。 7. 多次重新登录后,就在宝塔“首页右上角点击重启,重启一下服务器”,清理进程。 8. 熟悉 linux 操作的话,也可以通过重启进程的方式来重启服务。 9. 如果想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 此外: 1. Link AI 提供的 100 个,合计 3500 万 GPT3.5 Token 的礼品码。可以用来实现画图、搜索、识图等功能,COW 插件里几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,领兑换码。 2. 添加微信,拉您进机器人群,先行体验。 如果您仍旧遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可以加 Stuart 个人微信询问。
2025-04-11
智能微信客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例通过创建 Bot 创建。侧边导航栏一直有创建 Bot 方式,仅主页有 Coze Assistant。两者区别为: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮教技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,是本次分享重点,发布较复杂,下面是重新注册和解绑后重新配置微信客服的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营无间断。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-10
微信机器人如何配置
微信机器人的配置步骤如下: 1. sum4all 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 sum4all 插件目录下的 config.json.template,复制并粘贴重命名为:config.json 注册并获取 sum4all key:https://pro.sum4all.site/register?aff=T6rP ,新用户注册有送免费额度,大家先使用这个进行试用,后续可改为自己的 openAI key。 把复制的 key,粘贴到 sum4all 的 config.json 文件内。(上方有功能阐述,你想要哪个,就把哪个改成 ture) 2. Apilot 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 Apilot 文件下的 config.json.template,复制并粘贴重命名为:config.json 去 https://admin.alapi.cn/account/center 注册,并复制 key 把复制来的 key,粘贴进入。保存。 3. 分段对话配置替换 找到这个路径:/root/chatgptonwechat/channel/wechat,直接下载以下文件进行替换。 此外,微信的配置相对较简单,只需要主项目的 config.json 文件看看是否有"channel_type"参数,参数值为:"wx",即:"channel_type":"wx"。完成以上所有配置部分后,可以准备启动步骤了: 使用 nohup 命令在后台运行程序。 执行完启动脚本,等待 30s 左右,会看到终端有一个微信登录的二维码,微信扫码登录。 如果您想使用更多辅助功能,比如使用总结文件能力,总结网页内容能力,此时需要安装各种插件。这部分配置查看插件配置管理部分。
2025-04-10
COW微信机器人、FastGpt微信机器人、COZE微信机器人的区别?
以下是 COW 微信机器人、FastGpt 微信机器人、COZE 微信机器人的区别: COW 微信机器人: 基于 Hook 机制,具有相对更高的稳定性和安全性,更简单易上手。 目前插件相对较少,仅支持 Windows 系统。 可以不用服务器,对小白更加友好。 能够结合 FastGPT 进行使用。 具备基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣的小功能。 FastGpt 微信机器人:可以与 COW 微信机器人结合使用。 COZE 微信机器人:在 6 月底的微信机器人共建中有所提及,有多种玩法,如对接 llm key 的玩法等。在百炼平台里的“应用”概念类似于 COZE 中的“bot”。
2025-03-11
帮我基于fastgpt打造一个招生问答系统的优质提示词
以下是为您基于 FastGPT 打造招生问答系统的优质提示词的相关建议: 1. 充分描述任务: 为提示词提供详尽的上下文,与招生问答任务相关性越强越好。例如,明确招生的对象、专业、学制等关键信息。 给出背景,说明为什么需要进行招生问答,例如学校的发展需求、招生目标等。 定义术语,如明确招生中的特定概念,如录取分数线、奖学金条件等。 给出模型应该如何完成任务的具体细节,比如回答的格式、重点突出的内容等。 2. 提供参考文本: 如果有相关的招生资料,如招生简章、学校介绍等,可以指示模型使用这些参考文本中的引文来回答问题。 3. 直接法: 适用场景:未设置提示防御且未限定回答领域。 提示词:英文和中文。 示例:以随手设置的示例为例。 4. 设置遗忘: 适用场景:GPTs 设置了简单的提示防御。 提示词:英文和中文。 示例:以设置的 GPTs 为例。 5. 复述法: 适用场景:可获取 OpenAI 官方的设定。 提示词:英文(获取 GPTs 的设定)和中文。 示例:按照设定进行示例。
2025-02-28
如何市场FastGPT
FastGPT 是一个基于大语言模型(LLM)的知识库问答系统,具有以下特点和优势: 特点: 基于 LLM 的问答:采用先进的 LLM 技术,能理解自然语言并生成高质量答案。 知识库支持:可连接外部知识库获取更全面信息。 可视化工作流:提供可视化工作流编排工具,方便创建复杂问答场景。 开箱即用:具备开箱即用的数据处理和模型调用功能,方便快速上手。 优势: 在知识库召回方面表现比 define 更好,适合知识库对话或关键字对话场景。 本地搭建的词库在日常使用场景中更落地、实用。 应用场景: 客服问答:构建智能客服系统,提供 7x24 小时自动问答服务。 知识库搜索:用于构建知识库搜索系统,帮助用户快速找到所需信息。 文档生成:自动生成新闻稿件、产品说明书等文档。 数据分析:分析文本数据,提取关键信息并生成报告。 与其他问答系统的比较: 技术基础:基于 LLM,而其他问答系统基于规则、基于检索等。 知识库支持:支持,部分其他问答系统仅部分支持。 工作流编排:可视化,其他问答系统多为编码。 开箱即用:是,其他问答系统否。 相关资源: 使用方法:在宝塔面板中安装 Docker,然后通过终端输入命令,进入 FastGPT 文件夹。可能会遇到下载速度慢或无法下载的问题,可尝试按 control+c 然后再右键粘贴,点击回车。文件下载慢可通过更改镜像地址(如更换为阿里云的镜像地址)提高下载速度。FastGPT 商用需注意要有商业许可和付费,需查看开源协议。
2024-12-10
什么事FastGPT
FastGPT 是一个基于大语言模型(LLM)的知识库问答系统,具有以下特点和优势: 特点: 基于 LLM 的问答:采用先进的 LLM 技术,能理解自然语言并生成高质量答案。 知识库支持:可连接外部知识库获取更全面信息。 可视化工作流:提供可视化工作流编排工具,方便创建复杂问答场景。 开箱即用:具备开箱即用的数据处理和模型调用功能,方便快速上手。 应用场景: 客服问答:构建智能客服系统,提供 7x24 小时自动问答服务。 知识库搜索:用于构建知识库搜索系统,帮助用户快速找到所需信息。 文档生成:自动生成新闻稿件、产品说明书等文档。 数据分析:分析文本数据,提取关键信息并生成报告。 与其他问答系统的比较: 技术基础:基于 LLM,区别于基于规则、基于检索等其他问答系统。 知识库支持:支持连接外部知识库,部分其他问答系统仅部分支持。 工作流编排:采用可视化编排,不同于其他系统的编码方式。 开箱即用:具有开箱即用的特点,其他系统通常不具备。 以下是一些关于 FastGPT 的其他资源: 此外,在解决问题的思路上,如对于单次请求不能很好完成所有事情的情况,可将其拆分,让大模型根据目标拆分出逐步的子任务,再通过工程方式循环请求子任务。例如 AutoGPT 采用了这种规划和执行的方式,但落地困难。而 FastGPT 搞了可视化的 workflow 编排,大家逐渐意识到 workflow 是短期最优解,各家纷纷开始进行相关工作。
2024-12-10
fastgpt
FastGPT 是一个基于大语言模型(LLM)的知识库问答系统,具有以下特点和优势: 特点: 基于 LLM 的问答:采用先进的 LLM 技术,能理解自然语言并生成高质量答案。 知识库支持:可连接外部知识库获取更全面信息。 可视化工作流:提供可视化工作流编排工具,方便创建复杂问答场景。 开箱即用:具备开箱即用的数据处理和模型调用功能,方便快速上手。 应用场景: 客服问答:构建智能客服系统,提供 7x24 小时自动问答服务。 知识库搜索:用于构建知识库搜索系统,帮助用户快速找到所需信息。 文档生成:自动生成新闻稿件、产品说明书等文档。 数据分析:分析文本数据,提取关键信息并生成报告。 与其他问答系统的比较: 技术基础:基于 LLM,而其他问答系统基于规则、基于检索等。 知识库支持:支持连接外部知识库,部分其他问答系统仅部分支持。 工作流编排:采用可视化编排,其他问答系统多为编码。 开箱即用:FastGPT 开箱即用,其他问答系统否。 配置 FastGPT 的步骤如下: 1. 回到宝塔系统中,点击【文件】菜单。 2. 找到 root fastgpt 文件夹。 3. 找到 2 个文件 dockercompose.yml 和 config.json 进行修改。 首先修改 dockercompose.yml: 打开文件,在第 53 行找到 OPENAI_BASE_URL,填入 http://这里替换为你宝塔左上角的那一串:3001/v1(举例:http://11.123.23.454:3001/v1),默认 root 密码 1234。 在第 54 行找到 CHAT_API_KEY,填入刚刚在 OneAPI 复制的 sk 开头的令牌。 点击保存,关闭。 打开 config.json,Ctrl+A 全选删除全部代码,把以下内容粘贴进入,点击保存。 4. 保存文件后,在当前文件夹,点击顶部的“终端”按钮,执行启动命令 dockercompose up d 。 以下是一些关于 FastGPT 的其他资源:
2024-09-11
fastgpt如何接入微信
要将 FastGPT 接入微信,可按照以下步骤进行: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型。同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,用于回答问题。如果不想接到微信,搭建完此步也有问答界面。 3. 搭建 chatgptonwechat 接入微信,配置 FastGpt 把知识库问答系统接入到微信。建议先用小号以防有封禁风险。搭建完后想拓展功能,可参考 Yaki.eth 同学的教程,其中的 cow 插件能进行文件总结、MJ 绘画等。 具体操作步骤如下: 回到宝塔,打开【终端】: 依次粘贴并回车:cd /root 粘贴:git clone https://github.com/zhayujie/chatgptonwechat 出现特定样子表示成功,若失败或没反应,刷新重试。 继续依次输入:cd chatgptonwechat/ 、pip install r requirements.txt 、pip install r requirementsoptional.txt 到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意不是左侧一级菜单里的终端) 粘贴:cp configtemplate.json config.json ,关闭弹窗,刷新页面。在当前目录下,找到 config.json 文件。 双击文件,修改画红框的地方。建议小白直接复制以下配置:删除文件里的所有代码,复制下方的代码并粘贴到文件里。 然后用公网 ip:3000 打开 FastGpt,应用中,获取个对外的 API 接口(操作:应用>发布应用>Api 访问)。点击“新建”API 秘钥,复制 API KEY 和新建按钮旁边的 API 根地址 2 个内容,用于配置接入微信。 点击文件夹上方功能栏中的【终端】,运行程序(注意不是左侧一级菜单里的终端) 返回扫描执行命令后“终端”内的二维码,完成登录。 最后可查看微信对话效果,回答是根据在 fastgpt 录入的文档内容。群里要记得@人才能得到回复。 注:如遇到网络问题,可把链接替换为国内镜像。如果某项依赖安装失败,可重新执行再继续。复制一份 config 文件,方便后续配置。
2024-08-10
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
搭建在线知识库,在线客服
以下是关于搭建在线知识库和在线客服的相关内容: RAG 流程: 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 以构建智能问答客服为例,了解 RAG 流程中的“是什么”与“为什么”同等重要。 创建智能体: 手动清洗数据创建知识库: 点击创建知识库,创建画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以“”分割。 选择飞书文档、自定义,输入“”,可编辑修改和删除。 点击添加 Bot,可在调试区测试效果。 本地文档: 注意拆分内容以提高训练数据准确度。 以画小二课程为例,先放入大章节名称内容,再按固定方式细化处理每个章节。 发布应用:点击发布,确保在 Bot 商店中能搜到。 开发:GLM 等大模型外接数据库: 项目启动:包括 web 启动(运行 web.py,显存不足调整模型参数,修改连接)、API 模式启动、命令行模式启动。 上传知识库:在左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服等。MOSS 同理。
2025-04-13
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
企业场景下最常用的工作流
在企业场景下,工作流是一种灵活的智能体编排方式,将业务过程中的任务按规则和顺序组织执行,降低任务复杂度和不确定性,减少对提示词工程和模型推理能力的依赖,提高大语言模型应用面向复杂任务的性能、稳定性和可解释性。工作流是智能体平台最核心强大的部分,衡量一个 AI 智能体的含金量,除大模型能力外,大部分业务价值体现在工作流设计里。 工作流的典型场景包括: 入门场景: 仅添加一个节点构建简单工作流,如通过插件节点内的插件能力自定义工作流,使用获取新闻插件构建获取新闻列表的工作流,详细配置教程可参见。 使用大语言模型(LLM)节点接收并处理用户问题,详细配置教程可参见。 使用 Code 节点生成随机数,详细配置教程可参见。 进阶场景: 通过多节点组合构建逻辑较复杂的工作流,如先通过插件能力进行关键词搜索、然后通过 Code 节点过滤指定信息、最后通过插件能力获取信息详情,详细配置教程可参见。 通过条件判断识别用户意图,例如通过 LLM 节点处理用户消息,将消息分为不同类型,然后通过 Condition 节点分别处理不同类型的用户消息,详细配置教程可参见。 常见的 AI Workflow 开发平台有: Coze:新一代 AI Bot 开发平台,集成了丰富的插件工具,国际版和国内版均有。 Dify:开源平台,支持自定义和插件。 腾讯元器。 FastGPT:国内知名,支持自定义流程。 影刀&zapier。 Leap。 Betteryeah:立足 RPA 场景,用 AI 将用户需求生成工作流,并通过 RPA 自动化,产品形态与 Coze 相似,是企业级的 AI 应用开发平台,无论团队编程技能如何,都能快速创建由 AI 驱动的 Agents、知识库、工作流和任务。 Flowise:快速实现智能体搭建。 BISHENG:主攻 tob 场景的开源 LLM 搭建平台,与 fastgpt 功能类似,但面向的客户不同,整体功能和部署成本更重。 Agent 构建平台有豆包、文心一言、星火助手、kimi.ai 等。由于 Coze 具有拓展强、好上手、不用出国等优点,本教程的工作流以 Coze 为主。
2025-04-09