直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

DeepSeek R1和ChatGPT相比有什么优势?

回答

DeepSeek R1 与 ChatGPT 的优势比较如下:

  • 在数字乘法任务中,ChatGPT 和精简版的隐式 CoT 模型无法达到 100%的准确率,而从头开始训练的 DeepSeek R1 在将扩散采样步骤设置为 1 的情况下,能够保持显著的吞吐量同时达到 100%的准确率。
  • 在数学问题求解常用基准测试中,GPT-4 相对于 ChatGPT 表现出显著的改进,GPT-4 在许多复杂问题中展示了更深入的理解,并能够应用适当的推理。而 ChatGPT 通常会采用低级启发式方法,提到与问题仅是表面相关的公式和概念,表明缺乏实际理解。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

同时,作者进一步提出了DoT的多通道(MP)变体,称为DoTMP,该变体以一个接一个的思维范式生成理由。这种方法分离了多个理由的生成,并引入了因果归纳偏差,使得后续的理由可以在生成过程中被先前理由的更强条件信号所引导。具体来说,在第一轮中,作者通过模型生成第一个理由r1。然后将r1与s作为条件[s;r1]连接起来,通过模型采样得到r2。通过多次迭代,可以得到最终答案。作者首先从头开始训练DoT以完成数字乘法任务作为初步调查,如下表所示。可以观察到,ChatGPT和精简版的隐式CoT模型都无法达到100%的准确率。GPT-2可以通过微调达到高准确率,但在CoT过程中牺牲了吞吐量。有趣的是,从头开始训练的DoT能够在将扩散采样步骤设置为1的情况下,保持显著的吞吐量同时达到100%的准确率。随后作者从头开始在GSM8K上训练DoT,但只能达到5.61%的准确率,这低于GPT-2的微调版本。作者认为,这主要是由于从头开始训练DoT时缺乏预训练的自然语言理解能力。这就是为什么作者开始通过使用预训练的扩散模型进行进一步的微调探索。

宝玉 日报

?宝玉日报「12月25日」✨✨✨✨✨✨✨✨1⃣️?ChatGPT无法直接抓取网页内容的知识点限制原因:ChatGPT不会直接抓取URL内容,仅依赖内部知识库或通过必应搜索,但必应搜索结果(尤其中文)往往不够准确。解决方法:推荐手动复制网页内容,粘贴为Markdown或纯文本后再提交给ChatGPT,解析效果更佳。?[https://x.com/dotey/status/1871821505874579589](https://x.com/dotey/status/1871821505874579589)2⃣️?使用OpenAI o1的感受:回不去GPT-3.5了!能力提升显著:相比GPT-4,不仅能力进一步提升,还减少了对提示词的依赖。上下文优势:无需手动拆分长上下文,处理更复杂任务时表现稳定。?[https://x.com/dotey/status/1871648457070625015](https://x.com/dotey/status/1871648457070625015)3⃣️?游戏套壳事件:热度蹭得vercel老板都转发了

报告:GPT-4 通用人工智能的火花

简单地说,我们因此可以看到该模型的缺点是「幼稚」的注意力错误与更基本的限制之间的组合,因为其「线性思维」作为下一个标记预测机器。一个重要的问题是上述问题中哪些可以通过进一步的训练(也许是使用更大的模型)来缓解。对于前者问题,我们认为进一步的训练可以缓解这个问题,因为超人类的编码能力证明了这种注意力错误也将是致命的;一个关键的区别是GPT-4很可能是在比数学数据更多的代码上进行训练的。我们认为后者问题构成了更为深刻的限制,我们将在第8节中更详细地讨论。在本节的其余部分中,我们评估了模型在数学问题求解常用基准测试中的能力,并展示了模型在实际场景中应用定量思维的能力。我们还比较了GPT-4和ChatGPT在基准测试和其他数学问题上的表现(附录D中有更多例子)。粗略地说,我们发现GPT-4相对于ChatGPT表现出显著的改进:GPT-4在许多复杂问题中展示了更深入的理解,并能够应用适当的推理。另一方面,ChatGPT通常会采用低级启发式方法,提到与问题仅是表面相关的公式和概念,这表明缺乏实际理解。我们在本节末尾给出了几个示例,展示了高级数学方面的能力。

其他人在问
chatGPT
ChatGPT 是一种由 OpenAI 开发的基于 GPT(生成式预训练变换器)架构的人工智能模型。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 其具体工程相当引人入胜,最终(至少在它可以使用外部工具之前),ChatGPT 仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,你可以用它构建自己的应用来做很多事情,比如起草邮件、写 Python 代码、回答关于一组文档的问题、创建会话代理、给软件提供自然语言接口、辅导各种学科、语言翻译、假扮游戏或其他内容的角色等。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。想要使用更多功能更智能的 GPT4 需要升级到 PLUS 套餐,收费标准是 20 美金一个月,当然 GPT4 还有团队版和企业版,功能更多、限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-04-12
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
chatgpt作图后,显示已经完成,但是无法显示
以下是为您整合的相关内容: GPT4 在通用人工智能的工具使用方面表现出色,能够完成几乎所有任务,包括结合多个工具管理用户的日历和电子邮件。但它也存在一些弱点,如缺乏当前世界知识、难以进行符号操作等,不过能通过使用搜索引擎或 API 等外部工具来克服部分限制。相比之下,ChatGPT 在完成同样任务时存在较多不足。 Andrej Karpathy 亲授的大语言模型入门中提到,ChatGPT 在数学方面不擅长,会使用计算器和工具来完成相关任务,如计算估值、绘制图表、添加趋势线和进行分析等。
2025-03-31
如何才能使用上chatgpt 4o
以下是在安卓系统上使用 ChatGPT 4o 的详细步骤: 1. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后,打开 Google Play,按照提示一步步操作,登录 Google Play。 2. 下载安装 ChatGPT: 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错了。 可能会遇到“google play 未在您所在的地区提供此应用”的问题。经过测试,可在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。如果账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 3. 体验 ChatGPT: 如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus。 使用 ChatGPT 4o: 1. 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。 2. 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机?”图标,选择一个声音,就可以体验流畅的语音对话。 以上就是注册、安装和订阅 ChatGPT 4o 的详细步骤。希望能帮助您快速上手,充分利用这款强大的人工智能工具,提升工作和生活效率。关注微信公众号:JessieZTalk,在 AIGC 的路上共同进步!
2025-03-31
chatgpt4.5的使用方法
以下是关于 ChatGPT 4.5 的使用方法: 1. 目前 ChatGPT 官网有 GPT3.5、GPT4 和 ChatGPT 4.5 三个版本。ChatGPT 4.5 发布后引起关注,其可以免费体验,但免费体验次数有限。 2. GPT3.5 为免费版本,拥有账号即可使用,但智能程度不如 ChatGPT 4.5,且无法使用 DALL.E3 等功能和插件。 3. ChatGPT 4.5 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 4. 若想使用更多功能更智能的 ChatGPT 4.5,需要升级到 PLUS 套餐,收费标准为 20 美金一个月。GPT4 还有团队版企业版,但费用更贵,一般推荐使用 PLUS 套餐。 5. 关于注册、安装和订阅的详细步骤,您可以参考相关文章,如作者为 JessieZTalk 的亲测文章(原文链接:https://mp.weixin.qq.com/s/tzCVGrwgeG6Bss83Xmep0g )。
2025-03-28
deepseek与chatgpt的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点上,DeepSeek R1 效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一,且开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero 方面,跳过了监督微调进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响方面,DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊,其低成本和高性能使得英伟达市场地位受到挑战,导致股价下跌、市值蒸发。 6. 对于未来展望,开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权,AI 编程效率提升、门槛降低,创作能力不断提升,催生更多可消费内容形式。 此外,ChatGPT 采用人们熟悉的聊天框,形成单线程任务,而 flowith 跳出单一聊天框,用画布和节点构建多线程思维流,更适用于深度内容生成,其由资料库、创作画布、内容编辑三部分组成,优势在于可自由调用不同 AI 模型处理不同任务,涵盖文字和图片生成,任务能有机组合形成同频任务流。
2025-03-27
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
我公司想部署一个deepseek-R1,用云服务器请问大概需要多少钱?
部署 DeepSeekR1 模型使用云服务器的价格因云计算厂商而异: 华为昇腾社区:部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):免费额度:10000000/10000000,通过 API 调用。 腾讯云(自建服务器):多机分布式部署,节点数量:2 个,单节点配置:HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费。即日起至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,1.89/小时起;服务器部署的方式。 gitee ai:R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 需要注意的是,价格可能会有所变动,具体以各云计算厂商的最新公布为准。
2025-03-25
我想学习有关ai的知识,但是并不是单单的系统性的学,而是想利用现有的模型比如说deep seekr1模型来训练一个自己的模型这样的,来实现某些功能
以下是关于 DeepSeek R1 模型的相关知识: 1. DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。 2. 与其他模型相比,Alpha Zero 只训练了三天,就以 100 比 0 的战绩完胜 Alpha Go Lee,Alpha Go(老)采用监督学习+强化学习,学习人类棋谱,更接近人类职业棋手风格,继承了人类的局限,Alpha Zero(新)完全摒弃人类数据的纯强化学习,从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。DeepSeek R1 在训练中更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。 3. 使用 DeepSeek R1 给老外起中文名的操作指引: 点击邀请,复制邀请链接或下载邀请海报分享给好友。 打开火山引擎的模型页面(https://zjsms.com/iP5QRuGW/),使用习惯的方式登录。 登录后点击左侧列表里的“在线推理”,再点击“快速入门”。 获取 API Key,点击“创建 API Key”,可修改名字后创建,创建完成后点击“查看并选择”,将“已复制”的提示内容找个地方存一下。 复制 R1 的调用示例代码,选择模型为“DeepSeek R1”,修改示例代码中的相关内容,然后点击右侧的复制按钮,将代码找个地方存起来。 上述接入方法是快速入门方式,平台会自动创建在线推理接入点,并提供 50 万 Token 的免费额度,用完才需充值。如需充值,点击页面右上角的“费用”》“充值汇款”,根据账单适当充值。 4. DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,提升最终回答的质量,这种“自问自答”是在模拟人类的深度思考,其“聪明”源于独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。
2025-03-22
DeepSeek R1卡顿如何解决
以下是解决 DeepSeek R1 卡顿的方法: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型: 访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。 添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 4. 创建工作流: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek,输入包括搜索结果和开始节点的 USER_INPUT,开启对话历史并设置 10 轮。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。 测试并发布工作流:输入测试问题,测试完成后直接发布工作流。 此外,您还可以通过以下途径获取更多相关信息: 1. 2 月 14 日 8 点直播进行中:火山引擎解决方案专家带大家在 Coze 搭建满血版 R1 bot,飞书会议直播结束,回放看: 2. 学习文档: 3. 模板更新了:
2025-03-20
我想从Nanobrowser里植入DeepSeek的R1模型,来让它帮我做网页搜索之类的工作,我该怎么做,给出详细教程
以下是从 Nanobrowser 里植入 DeepSeek 的 R1 模型来进行网页搜索的详细教程: 1. 阿里云百炼平台相关: 模型广场:百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 无需部署:百炼平台无需部署,可直接使用 Deepseek R1 模型。 价格与免费额度:Deepseek R1 模型价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 授权与实名认证:使用 Deepseek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 模型效果对比:在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态能力:多模态可以识别更多输入信息,如读文件、图片等,而 Deepseek R1 本身不是多模态模型。 连接 Chat Box:通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。 API key 重置:可删除旧的 API key 并重新创建,方便本地软件连接。 2. 工作流创建: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek(即火山方舟里配置的 DeepSeek R1 模型),输入包括搜索结果(选择搜索节点 data 下的 webPages)和开始节点的 USER_INPUT,开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮,系统提示词不需要输入,用户提示词为空。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。测试完成后,直接发布工作流。 3. 网页聊天相关: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL 为 https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 打开联网功能,支持联网搜索使用 R1。
2025-03-20
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
我想在飞书云中用DeepSeek-R1模型提取链接中的信息,请问如何写指令呢?我刚刚进行了尝试,发现提取出的信息和我点开链接看到的信息不一致,这个问题又该如何解决呢?
在飞书云中使用 DeepSeekR1 模型提取链接中的信息并解决提取信息不一致的问题,您可以参考以下内容: 对于指令编写: 虽然 R1 推理能力较强,但您想表达的不一定完全与模型吻合,因此建议多加清晰指令。 模糊指令优化方面,比如对于宽泛需求可添加维度约束,如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法包括首轮生成获取基础内容、特征强化(如加强第三段的技术细节描述)、风格调整(如改用学术会议报告语气,添加结论部分)、最终校验(检查时间逻辑一致性,列出可能的事实性错误)。 对于提取信息不一致的问题: 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 另外,关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 1. 注册并登录火山引擎,点击立即体验进入控制台。 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 5. 确认无误后,点击“确认接入”按钮。 6. 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 并保存。 7. 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 直接查看并复制,没有则点击【创建 API key】。 9. 复制并保存好 API key。 在实现新闻播报自动化工作流方面: 第一步是内容获取,输入新闻链接,系统自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,获取网页里的图片。接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。然后使用链接读取节点,将文字内容提取出来。在提取链接后面接上一个大模型节点,用 DeepSeekR1 模型生成有吸引力的口播内容。若想加上自己的特征,可在提示词里写“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。
2025-03-18
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
deepseek的优势是什么?
DeepSeek 的优势包括以下方面: 1. 性能与成本:展示出媲美领先 AI 产品的性能,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 2. 文字能力:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。 3. 数学能力:经过优化,表现不错。 4. 模型特点: 推理型大模型:通过理解用户的真实需求和场景来提供答案,不需要用户提供详细步骤指令。 更懂人话:能够理解用户用“人话”表达的需求,无需特定提示词模板。 深度思考:回答问题时能够进行深度思考,非简单罗列信息。 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 5. 开源与创新:开源了多模态模型 JanusPro,在参数上领先,具备多种能力,通过优化训练策略、海量数据和大规模参数实现更强智能表现,统一 Transformer 架构,提供多种规模,全面开源,支持商用,部署使用便捷,Benchmark 表现优异。
2025-03-24
微调大模型的优势与运用的功能场景是什么?微调具体步骤是?
微调大模型具有以下优势和运用的功能场景: 优势: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 功能场景:适用于需要在特定领域(如法律、医学等)获得更优表现的情况。 微调大模型的具体步骤如下: 从参数规模的角度,大模型的微调分成两条技术路线:全量微调(FFT)和参数高效微调(PEFT)。全量微调是对全量的模型参数进行全量的训练,PEFT 则只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续大模型的训练过程,通过调整模型本身的参数来提高性能。 您可以参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2025-03-23
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
部署大模型的一体机有什么优势
部署大模型的一体机具有以下优势: 1. 语言翻译方面: 语境理解与适配:能够通过深度的上下文分析,理解语言背后的真正含义,避免词不达意和语境脱节的问题,尤其在处理隐喻、习语或文化特征的文本时,能更精准地捕捉并传达原文意图。 流畅自然的翻译输出:通过对大量自然语言数据的学习,能够生成更加流畅、自然且地道的翻译,接近母语水平,保持原文的语言风格和情感色彩。 灵活性与多场景适应:强大的适应性,能够根据不同的翻译场景灵活调整策略,在多场景翻译中表现得更具灵活性和精准度。 文化适配与行业专用翻译:能够深入理解语言背后的文化内涵,避免因文化差异导致的误解或偏差,在专业领域能提供更加专业且符合行业标准的翻译结果。 2. 模型部署方面: 内存优化:由于大模型参数众多,内存需求大,在实际部署时会进行模型压缩,使用内存占用更小的数据类型,如 16 位的浮点数,可直接减少内存使用。 解决传输瓶颈:在训练大模型中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点。 3. 硬件架构方面: 存算一体架构:运行几百亿个参数的大模型,存算一体架构是最佳选择,可避免数据搬运。 4. 知识结合方面: 大模型在通用知识方面表现出色,但对专业领域知识了解有限。将领域知识结合进大模型的方法包括重新训练、微调、RAG、关键词工程和加长 Context 等。目前在学术界,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。
2025-03-19