直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

豆包和coze有什么区别

回答

Dify 和 Coze 都是大模型中间层产品,有以下主要异同点:

  • 开源性:
    • Dify 是开源的,允许开发者自由访问和修改代码以定制,由专业团队和社区共同打造。
    • Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务和产品。
  • 功能和定制能力:
    • Dify 提供直观界面,结合多种功能,支持基于任何 LLM 部署 API 和服务。
    • Coze 有丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。
  • 社区和支持:
    • Dify 作为开源项目有活跃社区,开发者可参与共创共建。
    • Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。

豆包和 Coze 的区别在于:

  • 豆包主要是大模型交互,功能相对默认。
  • Coze 不用魔法,上手简单,更新快,插件多。在模型选择方面,GLM 模型和 MoonShot 模型对结构化提示词理解良好,适合处理精确输入输出任务;豆包系列模型在角色扮演和工具调用方面有优势,能识别用户意图并选择合适工具或服务。将这三种模型结合在工作流或多 Agent 中可实现优势互补。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:Dify 和 Coze 有什么异同

Dify和Coze都是大模型中间层产品,它们提供了将大型语言模型(LLM)集成到各种应用中的能力。以下是Dify和Coze的一些主要异同点:[heading2]开源性[content]Dify是开源的,允许开发者自由访问和修改代码,以便进行定制。Dify由专业团队和社区共同打造,促进了产品的灵活性和安全性。Coze由字节跳动推出,目前没有明确信息表明它是否开源。Coze可能更侧重于提供商业化服务和产品。[heading2]功能和定制能力[content]Dify提供直观界面,结合AI工作流、RAG管道、代理能力和模型管理等功能。它支持通过可视化编排,基于任何LLM部署API和服务。Coze提供丰富的插件能力和高效的搭建效率。Coze还支持发布到多个平台作为Bot能力使用。[heading2]社区和支持[content]Dify作为一个开源项目,拥有活跃的社区,开发者可以参与到产品的共创和共建中。Coze可能更多地依赖于官方的更新和支持,社区参与和开源协作的程度可能不如Dify。选择使用Dify或Coze时,开发者和企业需要根据自己的需求和目标来做出决策。该回答由AI大模型生成,请仔细甄别。

元子:小白的Coze之旅 2.0

咱可以直接问问AI-》[heading3]从豆包到coze[content]但是豆包这么好用,我为啥又要去用coze呢?豆包就像只有默认几个功能、主要核心还是大模型交互的存在,我有更多的要求了给我用最新的大模型给我把重复的工作做了给我更好地探索ai怎么帮助我[heading3]为啥是coze不是别人[content]不用魔法,上手极其简单更新非常快插件非常多(我们有插件分享session,敬请期待)[heading3]这一波故事从搜索开始[content]从搜索谈起(更新非常快)大佬作品:https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q现在的快速做法:也是只给大家看一下,现在更新很快,其实它的定制化非常AI智能创建:一键生成的人设,看起来没啥问题插件的重要:我们看看插件的作用(给大模型装上武器)从搜索开始,它只是个大模型,光秃秃的大模型不能直接搜索我们现在看到的AI搜索产品大致是这个逻辑,是需要搜索插件帮忙的其他的功能一样,比如生成思维导图,比如读取某个具体的网站链接,都是需要插件(装上眼睛耳朵,否则它就是个只能跟你纯文字交流的、读知识掌握到2023年6月的线上网友)工作流的必要性:现在它能搜索了,但是它的输出还是很差劲两个方法,一个,prompt里约束它的输出一个是用工作流保障它的稳定性啥叫稳定性?我随便输入给他,它会怎么给我生成、用什么工具我无法知道,我不能强迫它用这个就是说它一个机灵它就不搜索给我胡说也是有可能的所以,咱得搞搞工作流

蓝衣剑客:四万字长文带你通学扣子

在结束第五章节之前,我们需要来考虑下模型选择的问题。在Coze上,GLM模型和MoonShot模型因其对结构化提示词的良好理解而受到青睐。这些模型能够较为准确地解析和响应那些格式规范、结构清晰的指令,使得它们非常适合处理需要精确输入和输出的任务。另一方面,豆包系列模型则在角色扮演和工具调用方面表现出了特别的亲和力。这些模型不仅能够识别用户的意图,还能够智能地选择合适的工具或服务来执行用户的指令,从而实现更加流畅和直观的人机交互。将这三种模型结合在一个工作流或多Agent中,可以实现优势互补,创造出一个强大而灵活的工作流或多Agent。例如,GLM和MoonShot模型可以处理语言理解和生成的任务,而豆包模型则负责工具的调用和用户意图的识别,这样的搭配能够确保工作流的高效运行和用户需求的准确响应。

其他人在问
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
豆包如何创建智能体?
创建智能体的方法如下: 1. 通过 Coze 平台创建: 找到灵感:如果没有 Bot 灵感,可以查看获取灵感。 进行 Bot 创建: 打开扣子助手。 修改 Prompt,发送 Prompt1。 让扣子助手帮忙创建 Bot。 点击打开创建好的 Bot。 发布作品: 点击【发布】。 填写发布记录,发布到 Bot 商店。 复制智能体链接。 2. 在一枚扣子平台创建: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流:点击创建一个新的对话流(记得要和智能体关联),编排相关流程。 测试:找到一篇小红书笔记,试运行对话流,直接在对话窗口输入地址,查看数据是否成功。回到智能体的编排页面,同样进行测试,确保对话流执行成功。 发布:点发布后,只选择多维表格,然后进行配置。包括输出类型、输入类型等,完善上架信息,提交上架信息后,返回配置界面会显示已完成,即可完成最终的提交。 另外,在教学场景中使用豆包创建智能体时,例如让学生模拟杜甫进行回答,可设置相关 prompt,选择特定声音等,并通过学生小组讨论设计问题来进行教学。
2025-04-11
豆包如何创建智能体?
创建智能体的方法如下: 通过 Coze 平台创建: 找到灵感,可以查看获取。 进行 Bot 创建,通过扣子助手快速进行,包括修改 Prompt、让扣子助手帮忙创建 Bot 以及点击打开创建好的 Bot 等步骤。 发布作品,包括点击【发布】、填写发布记录并发布到 Bot 商店、复制智能体链接。 在一枚扣子平台创建: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流,点击创建新的对话流并与智能体关联。 进行测试,找到一篇小红书笔记,试运行对话流。 发布,点发布后选择多维表格,进行配置,包括输出类型、输入类型等,完善上架信息并提交。 此外,还有在教学场景中使用豆包创建智能体的示例,如设定为杜甫的角色,并设定相关 prompt 和声音等。
2025-04-11
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
豆包AI有网址吗
豆包 AI 是抖音旗下基于云雀大模型开发的 AI 工具,提供聊天机器人、写作助手以及英语学习助手等功能。其访问网址是:https://www.doubao.com/ 。 此外,为您提供部分其他 AI 网站的信息: 文心一言:yiyan.baidu.com Beacons AI:beacons.ai Hugging Face:huggingface.co ZeroGPT:zerogpt.com Gamma:gamma.app Gauth:gauthmath.com Feedly:feedly.com Loom:loom.com mailchimp:mailchimp.com prezi:prezi.com Poe AI 平台是一个支持与多个智能 AI 机器人进行实时在线交流的聊天网站,包括 GPT4 等。注册账号后可免费使用,部分功能需要付费订阅。其官网地址是:https://poe.com/ ,可在官网帮助中心上找到具体教程。
2025-03-14
豆包如何克隆声音
以下是关于克隆声音的相关信息: ElevenLabs 推出了全自动化的 AI 配音或视频翻译工具。您只需上传视频或粘贴视频链接,它能在几十秒到几分钟内将视频翻译成 29 种语言,还能克隆原视频中的声音进行配音。群友瑞华进行了测试,相关视频链接为: 。另外,有群友测试了豆包的音色模仿,读大概 20 个字的句子,5 秒就能生成非常像的音色,之后可用自己的声音读生成的文字内容。 在 Heygen 等网站可以自助购买声音克隆服务。 MiniMax 有两个适合任务的大模型(豆包的也不错):MiniMaxText01 支持 400 万 token 的上下文,T2A v2(speech01turbo)拥有最好的声音复刻效果。可通过其开放平台 https://platform.minimaxi.com/login 进行注册登录及实名认证。首次注册会赠送 15 元,无需充值就能玩。接着创建 API Key 并保存好,还可以克隆声音,链接为:https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning 。克隆时有几个地方要填:创建 voice id、上传复刻音频(10 300 秒,尽量安静)、上传音频 prompt(不超过 8 秒的声音)、试听文本(不超过 8 秒声音所念内容),然后勾选用户协议,点击“克隆”选项,过一段时间完成克隆。使用填写的 voice id 生成声音,即为克隆音色生成的声音。
2025-03-11
使用豆包即梦和通义app绘制海报封面都是出现文字不对的情况,有哪些改进的或者是更好的解决方案
以下是针对使用豆包即梦和通义 app 绘制海报封面出现文字不对情况的改进和解决方案: 使用豆包即梦: 1. 为其他城市定制艺术字海报:可以使用豆包来生成个性化设计。豆包会根据城市特色和地标调整提示词,创造符合城市风格的艺术作品。 打开豆包网站 https://www.doubao.com/chat 。 输入对应内容获得城市的 AI 绘画提示词。 2. 优化海报细节: 利用即梦中的消除笔工具修正细节错误。例如,若生成图片中有元素不协调或小细节(如文字笔画、图案)错误,可用消除笔去除不需要的部分。 多抽卡获取更理想设计。AI 绘画核心在于多抽卡,若首次生成效果不佳,可多次尝试或调整提示词细节抽卡,直至找到满意设计。 希望这些方案能帮助您解决问题,创作出满意的海报封面。
2025-03-07
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
工作流 和 智能体的区别?
工作流和智能体的区别主要体现在以下几个方面: 定义: 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 功能: 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。 范围: 智能体是特定任务的“助手”,用于局部执行任务。 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。 在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。
2025-04-08
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30