直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
论文写作相关的AI推荐
以下是为您推荐的与论文写作相关的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:虽非纯粹 AI 工具,但结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,以下工具可供考虑: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:可提取文档结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,能提供修改意见和帮助。 在 AI 文章排版方面,以下工具较为流行: Grammarly:不仅检查语法拼写,还有排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助编辑器和插件。 PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 LaTeX 编辑器,有丰富模板和协作工具,适合学术写作排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。学术论文常选 LaTeX 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-13
有哪些著名的AI咨询公司?提供方案解决的那种
以下是一些著名的提供方案解决的 AI 咨询公司及相关信息: 在 AI 心理咨询产品方面,有 Woebot、Replika、Talkspace、Wysa、Moodfit、Youper 等。Woebot 是基于聊天机器人的心理健康平台,使用认知行为疗法原理引导用户。Replika 是 AI 驱动的个人朋友,提供情感支持和指导。Talkspace 是在线心理咨询平台,使用 AI 技术匹配咨询师。Wysa 提供情绪管理和心理健康支持。Moodfit 分析用户情绪模式并提供建议。Youper 结合 AI 和虚拟现实改善心理健康。但对于严重心理问题仍需专业帮助,且应作为传统咨询的补充。 在其他 AI 应用方面,如 14 号的小红书穿搭推荐,是 AI 时尚穿搭建议平台,利用图像识别和数据分析,根据用户身材和风格提供穿搭建议。15 号的蚂蚁财富智能理财助手,通过数据分析和机器学习为用户提供专业投资建议。16 号的法信智能法律咨询,运用自然语言处理和知识图谱解答法律问题。17 号的慧植农当家等是 AI 农业病虫害识别系统,借助图像识别和机器学习帮助农民识别病虫害。18 号的小米智能家居系统,基于物联网技术和机器学习实现家居设备智能化控制。19 号的文案狗等是 AI 广告文案生成工具,通过自然语言处理快速生成吸引人的广告文案。 在生成式 AI 平台的基础设施供应商方面,英伟达是目前该领域最大的幕后赢家,其数据中心 GPU 收入可观,建立了坚固的护城河。同时也有其他供应商,如甲骨文等挑战者,以及一些提供针对大模型开发人员解决方案的初创公司,如 Coreweave 和 Lambda Labs 等。此外还有谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia 和 Trainium 芯片,以及来自 Cerebras、Sambanova 和 Graphcore 等初创公司的 AI 加速器,英特尔也带着高端芯片进入市场,但新芯片占据的市场份额有限。
2024-11-13
如何用ai模型做训练
以下是关于如何用 AI 模型做训练的相关内容: 要在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和学徒实践开始,AI 也应如此。当前的学习方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定数据点。就像预医学生从基础课程学起,设计新疗法的科学家经历多年学习和指导,这种方式能培养处理细微差别决策的直觉。 大模型的构建过程包括: 1. 收集海量数据:如同教孩子博学多才要让其阅读大量资料,对于 AI 模型要收集互联网上的各种文本数据。 2. 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集的数据,如删除垃圾信息、纠正拼写错误等。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构。 4. 训练模型:像孩子开始学习,AI 模型开始“阅读”数据,通过反复预测句子中的下一个词等方式逐渐学会理解和生成人类语言。 为提高 AI 模型的鲁棒性,应对可能的“恶意”样本数据导致的幻觉,可使用对抗训练技术,让模型在训练中接触并学会识别和抵抗。
2024-11-13
虚拟形象IP设计
以下是关于虚拟形象 IP 设计的相关内容: 在 Midjourney 商业实战案例的 AI 绘画之 IP 角色篇中: 1. 可爱的花裙小女孩: 关键词:a super cute girl, wearing a floral dress, wearing boots, wearing a hat, holding bag, big watery eyes, full body, looking at viewer, open hands, MD clothing, clothing wrinkles, surprise, clean background, dreamy, pop mart mockup, blind box toy, disney style, fine luster, 3D rendering, OC, front lighting, face shot, best quality, 8K, ultra detailed –ar 3:4 –niji 可以把生成的 IP 扣下来重新排版以获得更好的效果。 2. 调皮的小男孩: 关键词:A handsome boy, dirty braids, trendy wear, a shoes front view, ip pop mart blind box, front view, animation effects, clean background, white background, morale group, movie lighting, light and shade contrast, 8k, best quality, super detail, 3d c4d, oc rendering, ultra high definition, 3d rendering –ar 3:4 –v 5 3. 气泡雨衣女孩: 关键词:whole body!! a cute girl from future cyberpunk, wearing a sliver raincoat and wearing a big goggle, charming pose, floating glass balls, soft pastel gradients, popmart blindbox, clay material, bright background, awardwinning, LED 3d art, depth of field, Pixar trend. surreal, octane rendering, raytracing, complex details, animation lighting, c4d –ar 3:4 在 WaytoAGI 品牌 VI 中: IP 角色是一只全身像的鹿,不仅是“路”的谐音,还象征着尊贵、温和和灵动。在不同文化中,鹿常被看作是好运和长寿的象征,将品牌与这些积极意象相联系。 请注意:以上 logo 品牌信息禁止私自使用,如需使用请联系组织管理员。品牌 LOGO 为本社区独有知识产权,未经正式授权,任何个人或实体不得擅自用于商业目的。我们珍视品牌价值,将坚决维护合法权益。对于侵犯 LOGO 使用权的行为,我们将依法采取措施,追究相关法律责任。
2024-11-13
SD软件使用
以下是关于 SD 软件使用的相关内容: 1. 软件安装: 系统要求:Win10 或 Win11。 Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存和显卡内存(显存)。8GB 运行内存可勉强运行 SD,推荐 16GB 以上运行内存;4GB 显存可运行 SD,推荐 8GB 以上显存。 安装方式:配置达标可跳转至对应安装教程页。 2. 制作二维码: 使用进行安装。如果使用的是 Colab Notebook,只需在启动时选择 ControlNet。 生成二维码:首先需要一个二维码。为增加成功机会,请使用符合以下条件的二维码。使用高容错设置或草料二维码。具体步骤为:第一步选择文字类型,输入二维码的文字;第 2 步将容错设置为 30%;第 3 步按生成;第 4 步将二维码下载为 PNG 文件。 3. 软件原理理解: 模型下载与放置:不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角的模型列表中选择(看不到就点旁边的蓝色按钮刷新)。 VAE:相当于给模型增加提高饱和度的滤镜和局部细节微调,有的大模型自带 VAE,可在启动器里面下载,下载的 VAE 放在根目录的【……\\models\\VAE】文件夹。 Embedding:功能相当于提示词打包,可在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。 LORA:可以将人物或者物品接近完美地复刻进图像中,具有极大商用价值,但使用时需注意版权和法律问题。
2024-11-13
大模型排名
以下是关于大模型排名的相关信息: 斯坦福发布了大模型排行榜 AlpacaEval,这是一种基于 LLM 的全自动评估基准,更加快速、廉价和可靠。项目链接:https://github.com/tatsulab/alpaca_eval ,排行榜链接:https://tatsulab.github.io/alpaca_eval/ 。 该排行榜分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在 GPT4 评估榜单中,GPT4 稳居第一,胜率超过 95%;Claude 和 ChatGPT 胜率都在 80%以上,分别排名第二和第三,Claude 以不到 3%的优势超越 ChatGPT。 开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco;Vicuna 发挥稳定,胜率超过 70%排在第六,紧追 Guanaco 65B;Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 团队已开源所有模型评估代码和分析数据,以及支持未来新模型榜单更新的测试工具,但它仍不是一个全面的模型能力评测系统,存在指令比较简单、评分可能更偏向风格而非事实、没有衡量模型可能造成的危害等局限性。 中国国内的大模型排名可能在短时间内会有变化,作为 AI 机器人无法提供最新的信息。要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在会定期更新相关的排名报告,可以供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
智能字幕
以下是关于智能字幕的相关信息: 在制作数字人视频时,可通过以下步骤添加智能字幕:点击文本 智能字幕 识别字幕,然后点击开始识别,软件会自动将文字智能分段并形成字幕。完成后,可点击右上角的“导出”按钮导出视频备用。 为您推荐以下视频自动字幕工具: 1. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕,已处理 1.2 亿+视频,识别准确率接近 100%。 2. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,还可自定义视频字幕样式。 3. Arctime:能对视频语音自动识别并转换为字幕,甚至支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 4. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 此外,还有一些包含自动字幕功能的视频 AIGC 工具,如 veed.io 。 以上工具各有特点,您可根据自身需求选择最适合的。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
如何学习提示词
学习提示词可以参考以下步骤和方法: 1. 基础概念学习 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料 通读官方文档,了解提示词相关指南。 研究开发团队和专家的教程、技巧分享。 3. 学习常见术语和范例 熟悉相关领域(如 UI、艺术、摄影)的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧 学会组合多个词条精确描述想要的效果。 掌握使用特定符号(如“()”、“”)控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈 用不同提示词生成各种风格和主题的图像。 对比结果,分析原因,总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库 按主题、风格等维度建立自己的词库。 记录成功案例和总结,方便复用。 7. 持续跟进前沿 关注模型的最新更新和社区动态。 掌握提示词的新技术、新范式、新趋势。 此外,还需注意: 1. 理解提示词的作用,它为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 多实践、迭代、优化,尝试变体并分析输出差异。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究,提示工程是前沿领域,持续关注最新成果和方法论。 精心设计的提示词能最大程度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。
2024-11-13
如何学习提示词
学习提示词可以按照以下步骤和方法进行: 1. 基本概念的学习: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,掌握其运用技巧能最大限度发挥模型潜能。具体包括: 1. 理解提示词的作用:提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧:明确任务目标,用简洁准确的语言描述;给予足够背景信息和示例,帮助模型理解语境;使用清晰指令,如“解释”“总结”“创作”等;对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 提示词是给大语言模型的输入文本,用于指定模型执行任务和生成输出,发挥“提示”模型的作用。设计高质量提示词需根据目标任务和模型能力精心设计。学习提示词需要先了解大模型特性,具备清晰表述需求和任务的能力。
2024-11-13
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。
2024-11-13