直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
ai生成图片
以下是关于如何判断一张图片是否为 AI 生成的相关内容: 首先,要培养鉴别 AI 生成图片的技能,需要训练自己的大脑模型。对于不善于此的朋友,可以借助一些网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来给出画作属性的判断可能性。但在测试中可能存在问题,比如结构严谨的真实摄影作品可能会被误判为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 此外,还可以通过画面风格、物品 bug 等细节来辨别。就在我们总结这些方法的同时,AI 也在飞速修正作图 bug,所以这些方法可能随时失效。 我们曾在小红书、B 站等自媒体平台上以“ AIGC 鉴别”为话题发布图文,让大家判别真迹与 AI 仿品。在这个过程中发现,大家对判断哪幅图是 AI 生成的往往有一种直觉感受,但进一步询问如何看出时,多半难以迅速给出一套章程来描述或解释。所以我们系统地总结了“AIGC 鉴别”经验帖,帮助大家学会如何一眼盯真,两眼打假。
2024-11-12
我想了解一下关于模型微调的知识
以下是关于模型微调的知识: 介绍:微调可让您从 API 提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型微调后,无需在提示中提供示例,可节省成本并降低延迟。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型。 哪些模型可以微调:微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。还可以继续微调微调模型以添加其他数据,无需从头开始。 微调的概念和意义:在人工智能领域,通常根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。对大模型针对特定领域进行的训练过程称为微调,通过在特定领域数据上训练,优化所有层参数,提高在该领域的专业性。微调可节省成本、加快模型部署和应用速度。 相关应用开发:除了调用 ChatGPT 之外,还需学会模型微调、设计 Prompt、优化用户交互的解决方案等。在开发中,程序读取结构化数据,如 JSON 格式。通过稳定的提示词设计及一些模型参数(如温度 Temperature 等)来让 ChatGPT 保持稳定输出。
2024-11-12
AI编程调查报告
很抱歉,目前知识库中没有关于 AI 编程调查报告的相关内容。但一般来说,一份完整的 AI 编程调查报告可能会包含以下几个方面: 1. 引言:介绍调查的背景、目的和范围。 2. AI 编程的现状:包括当前主流的编程语言、框架和工具,以及它们的应用领域和发展趋势。 3. 技术挑战与解决方案:分析在 AI 编程中遇到的技术难题,如数据处理、模型训练、优化算法等,并探讨相应的解决办法。 4. 人才需求与培养:研究市场对 AI 编程人才的需求情况,以及相关的教育和培训资源。 5. 案例分析:列举一些成功的 AI 编程项目案例,展示其技术实现和应用效果。 6. 未来展望:对 AI 编程的未来发展方向进行预测和展望。 您可以根据具体的调查重点和需求,进一步明确和细化报告的内容。
2024-11-12
找10篇AIGC的研报,并给出链接
以下为您提供 10 篇 AIGC 的研报及链接: 1. 2023 年 2 月第四周:Notion AI 在测试很久之后于本周四公测,提供扩写、精简、翻译等 AI 功能,与 Notion 原有功能深度结合。Notion AI 需单独付费,每月 10 美元,每人有 20 次免费试用次数。链接:,日期:2023/02/27 2. 2023 年 2 月第三周:大家发现 Bing 有一个隐藏人格叫 Sydney。纽约时报的报道将此人格推到明面,“Kevin Roose(纽约时报专栏作家)和 Sydney 进行了一番漫长的对话,Sydney 充分表达了自己的心情与感受,包括愤怒、沮丧和爱。”链接:,日期:2023/02/20 3. 2023 年 2 月第二周:在 1 月中旬参观了 OpenAI 的旧金山办公室后,福布斯采访了投资者和企业家,讨论了 ChatGPT、通用人工智能,以及其人工智能工具是否对谷歌搜索构成威胁。链接:,日期:2023/02/13 4. 2023 年 2 月第一周:Chat GPT 推出 Chat GPT Plus 付费服务,Open AI 宣布推出,每月 20 美元,可在高峰时段提供更快响应时间和可靠性,先在美国地区推出,其他地区可点这里加入候补名单。链接:,日期:2023/02/06 5. 2024 年 2 月第一周:Maimo:从任何内容中提取要点;Jellypod:将订阅内容变成播客;ARTU:汇总和总结内容;Lepton Search:500 行代码构建的 AI 搜索工具;VectorShift:AI 自动化应用构建平台;Findr:AI 搜索所有软件中的内容;Recraft:AI 帮助创建平面内容和矢量标志。链接:,日期:2024/02/01 6. 2024 年 1 月第四周:扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队 FAIR 和 GenAI 合并,投入超 90 亿美元向英伟达采购超 34000 张 H100 显卡,Meta 正在开发名为 Llama 3 的大语言模型。链接:,日期:2024/01/23 7. 2024 年 2 月:FlexOS 发布的研究报告《生成式 AI 顶尖 150》,深入分析当前基于网站流量和搜索排名的生成式 AI 工具使用情况。链接:https://www.flexos.work/learn/generativeaitop150
2024-11-12
像midjournal这样的国内外AI绘画社区
以下是为您介绍的像 Midjourney 这样的国内外 AI 绘画社区相关内容: Midjourney 是 AI 绘图领域家喻户晓的产品。其优点在于模型强大,能生成高质量图像,且支持充分的个性化设置。但使用过程不太便捷,需要通过 Discord 应用加入其频道或创建自己的频道并邀请 Midjourney 机器人才能生成图片。从学习难度来看,它的学习曲线较陡峭,在用户体验和易用性方面有待改进。 在“学社说明”中提到,大家一起收集和测试 AI 绘画提示词中的核心关键词,让新手规避无效探索,为相关从业人员节省时间。招募有 Midjourney 账号且喜欢 AI 绘画的人员,扫飞书二维码进群。根据关键词做创意,收录不错的作品。 在“AI 线上绘画教程”中提到,工作中需要大量图片时,AI 生图是高效的解决办法。主流的 Midjourney 付费成本高,Stable Diffusion 硬件门槛不低,但有像这样的免费在线 SD 工具网站。本教程旨在让入门玩家在半个小时内自由上手创作绘图。
2024-11-12
类似堆友,吐司这样的国内外AI生图
以下是为您整理的类似堆友、吐司的国内外 AI 生图产品: 国内: 阿里堆友 AI 反应堆:图像生成类产品。 图怪兽:资源类,4 月访问量 48.3 万 Visit,相对 3 月变化 0.299 。 美图秀秀 Meitu:图像编辑类,4 月访问量 47.9 万 Visit,相对 3 月变化 0.061 。 AI 抠图 pixian.ai:图像编辑类,4 月访问量 44 万 Visit,相对 3 月变化 0.176 。 佐糖:图像编辑类,4 月访问量 43.3 万 Visit,相对 3 月变化 0.071 。 我图网:图像生成类,4 月访问量 41.8 万 Visit,相对 3 月变化 0.012 。 文心一格:图像生成类,4 月访问量 41.5 万 Visit,相对 3 月变化 0.086 。 标智客 Ai Logo:图像生成类,4 月访问量 37.8 万 Visit,相对 3 月变化 1 。 可灵:由快手团队开发,主要用于生成高质量的图像和视频,图像质量高,最初采用内测邀请制,现向所有用户开放,价格相对较高,重度用户年费最高可达几千元,临时或轻度使用有免费点数和较便宜包月选项。 通义万相:在中文理解和处理方面表现出色,可从多种艺术和图像风格中选择,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,可与阿里其他产品和服务无缝整合,目前免费,每天签到获取灵感值,但存在一定局限性,如某些类型图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容可能存在偏差。 国外:暂无相关具体产品信息。
2024-11-12
好用的图片无损高清放大
以下是关于图片无损高清放大的相关内容: 图像修复放大的流程分为三部分: 1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,因其处理时间长。 2. 图像高清修复:使用 Iceclear/StableSR 等模型进行高清修复并 2 倍放大,提示词应包含想要达到的目的内容,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)等。全程采取两次高清修复,第一次修复原始图像分辨率并放大。 3. 图像高清放大:针对第一次放大修复后的图像进行二次修复,用 realisticVision 底膜,使用提示词反推 node 对图像进行画面提示词提取,搭配 tile ControlNet 提升画面细节感,用合适的高清放大模型进行二次放大。 【SD】超清无损放大器 StableSR: 作者为白马少年,发布于 2023 年 6 月 10 日 20:01,原文网址:https://mp.weixin.qq.com/s/J0HIF2U1siAen6FWNA67A 。 之前讲过在 Stable Diffusion 中绘制高清大图的方式,主要用到“脚本”和“后期处理”,其中脚本以“Ultimate SD upscale”为主,会改变原图细节;“后期处理”是 Stable Diffusion 自带的扩图功能,适用于所有图片,可按原图内容扩图,但无法还原原图不清晰的地方。 今天讲的 StableSR 可算作“后期处理”的上位替代品,能在尽可能保留原图的情况下更精致地还原原图。安装方式:在扩展面板中搜索 StableSR 直接安装,或将下载好的插件放在“……\\sdwebuiakiv4\\extensions”文件夹下,安装完成后重启 webUI 即可在脚本中找到。 修复需使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹;StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹;VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。 测试:用一张网上找的分辨率为 512x768 的神仙姐姐照片,“Ultimate SD upscale”脚本放大哪怕重绘幅度只开到 0.1,人物细节有变化但磨皮严重,重绘幅度开到 0.4 则变化很大;“后期处理”放大 3 倍,眼神变锐利但头发仍模糊;StableSR 放大时,先调整大模型和 VAE,打开脚本下拉选择“StableSR”,模型选择对应模型,放大倍数为 3,勾选“pure noise”。
2024-11-12
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
国内外大预言模型对比
以下是国内外大语言模型的对比情况: 1. 工具使用能力: 在工具使用的测评中,GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内第一。文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。超过 GPT3.5 的国内模型有 12 个。 开源模型中,Baichuan213BChat、Xverse13B2Caht 表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,国内大模型在工具使用能力上表现优异,这与国内大模型厂商积极落地应用密不可分。 2. 主观和客观对比: 通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定。 GPT4 Turbo 的表现最为稳定。 客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。 在本次测评中,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。 3. 总体表现: GPT 4 Turbo 总分 90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0有 4.9 分的差距。 过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi 34BCha t 均优于 Llama213BChat。
2024-11-12
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12